Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 21    https://doi.org/10.1007/s12200-024-00124-4
Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing
Camila Aparecida Zimmermann1, Koffi Novignon Amouzou1, Dipankar Sengupta1, Aashutosh Kumar1, Nicole Raymonde Demarquette2, Bora Ung1()
1. Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
2. Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
 Download: PDF(3599 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Novel poly(dimethylsiloxane) (PDMS) doped with two different spiropyran derivatives (SP) were investigated as potential candidates for the preparation of elastomeric waveguides with UV-dependent optical properties. First, free-standing films were prepared and evaluated with respect to their photochromic response to UV irradiation. Kinetics, reversibility as well as photofatigue and refractive index of the SP-doped PDMS samples were assessed. Second, SP-doped PDMS waveguides were fabricated and tested as UV sensors by monitoring changes in the transmitted optical power of a visible laser (633 nm). UV sensing was successfully demonstrated by doping PDMS using one spiropyran derivative whose propagation loss was measured as 1.04 dB/cm at 633 nm, and sensitivity estimated at 115% change in transmitted optical power per unit change in UV dose. The decay and recovery time constants were measured at 42 and 107 s, respectively, with an average UV saturation dose of 0.4 J/cm2. The prepared waveguides exhibited a reversible and consistent response even under bending. The sensor parameters can be tailored by varying the waveguide length up to 21 cm, and are affected by white light and temperatures up to 70 ℃. This work is relevant to elastomeric optics, smart optical materials, and polymer optical waveguide sensors.

Keywords Spiropyrans      PDMS      Photochromism      Polymer optical waveguides      UV detection     
Corresponding Author(s): Bora Ung   
About author:

#These authors contributed equally to this work.

Issue Date: 08 August 2024
 Cite this article:   
Camila Aparecida Zimmermann,Koffi Novignon Amouzou,Dipankar Sengupta, et al. Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing[J]. Front. Optoelectron., 2024, 17(3): 21.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00124-4
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/21
1 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans : IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 100. A Review of Human Carcinogens. Part D: Radiation. International Agency for Research on Cancer, Lyon (2012)
2 J.W. Cherrie, , M.P.C. Cherrie, : Workplace exposure to UV radiation and strategies to minimize cancer risk. Br. Med. Bull. 144 (1), 45- 56 (2022)
https://doi.org/10.1093/bmb/ldac019
3 R.L. McKenzie, , P.J. Aucamp, , A.F. Bais, , L.O. Björn, , M. Ilyas, , S. Madronich, : Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10 (2), 182- 198 (2011)
https://doi.org/10.1039/c0pp90034f
4 P.W. Barnes, , T.M. Robson, , P.J. Neale, , C.E. Williamson, , R.G. Zepp, , S. Madronich, , S.R. Wilson, , A.L. Andrady, , A.M. Heikkilä, , G.H. Bernhard, , A.F. Bais, , R.E. Neale, , J.F. Bornman, , M.A.K. Jansen, , A.R. Klekociuk, , J. Martinez-Abaigar, , S.A. Robinson, , Q.W. Wang, , A.T. Banaszak, , D.P. Häder, , S. Hylander, , K.C. Rose, , S.Å. Wängberg, , B. Foereid, , W.C. Hou, , R. Ossola, , N.D. Paul, , J.E. Ukpebor, , M.P.S. Andersen, , J. Longstreth, , T. Schikowski, , K.R. Solomon, , B. Sulzberger, , L.S. Bruckman, , K.K. Pandey, , C.C. White, , L. Zhu, , M. Zhu, , P.J. Aucamp, , J.B. Liley, , R.L. McKenzie, , M. Berwick, , S.N. Byrne, , L.M. Hollestein, , R.M. Lucas, , C.M. Olsen, , L.E. Rhodes, , S. Yazar, , A.R. Young, : Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem. Photobiol. Sci. 21 (3), 275- 301 (2022)
https://doi.org/10.1007/s43630-022-00176-5
5 C.M. Fernández-Marchante, , F.L. Souza, , M. Millán, , J. Lobato, , M.A. Rodrigo, : Does intensification with UV light and US improve the sustainability of electrolytic waste treatment processes? J. Environ. Manage. 279, 111597 (2021)
https://doi.org/10.1016/j.jenvman.2020.111597
6 EPA 832-F-99-064 Wastewater Technology Fact Sheet Ultraviolet Disinfection . United States Environmental Protection Agency (1999)
7 M. Raeiszadeh, , B. Adeli, : A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. ACS Photonics 7 (11), 2941- 2951 (2020)
https://doi.org/10.1021/acsphotonics.0c01245
8 C.C.R. Ramos, , J.L.A. Roque, , D.B. Sarmiento, , L.E.G. Suarez, , J.T.P. Sunio, , K.I.B. Tabungar, , G.S.C. Tengco, , P.C. Rio, , A.L. Hilario, : Use of ultraviolet-C in environmental sterilization in hospitals: a systematic review on efficacy and safety. Int. J. Health Sci. (Qassim) 14, 52- 65 (2020)
9 A. Bagheri, , J. Jin, : Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1 (4), 593- 611 (2019)
https://doi.org/10.1021/acsapm.8b00165
10 R.B. Weller, , I.M. Macintyre, , V. Melville, , M. Farrugia, , M. Feelisch, , D.J. Webb, : The effect of daily UVA phototherapy for 2 weeks on clinic and 24-h blood pressure in individuals with mild hypertension. J. Hum. Hypertens. 37 (7), 548- 553 (2022)
https://doi.org/10.1038/s41371-022-00729-2
11 R. Sidbury, , D.M. Davis, , D.E. Cohen, , K.M. Cordoro, , T.G. Berger, , J.N. Bergman, , S.L. Chamlin, , K.D. Cooper, , S.R. Feldman, , J.M. Hanifin, , A. Krol, , D.J. Margolis, , A.S. Paller, , K. Schwarzenberger, , R.A. Silverman, , E.L. Simpson, , W.L. Tom, , H.C. Williams, , C.A. Elmets, , J. Block, , C.G. Harrod, , W.S. Begolka, , L.F. Eichenfield, : Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol. 71 (2), 327- 349 (2014)
https://doi.org/10.1016/j.jaad.2014.03.030
12 K.K. Childress, , K. Kim, , D.J. Glugla, , C.B. Musgrave, , C.N. Bowman, , J.W. Stansbury, : Independent control of singlet oxygen and radical generation via irradiation of a two-color photosensitive molecule. Macromolecules 52 (13), 4968- 4978 (2019)
https://doi.org/10.1021/acs.macromol.9b00424
13 H.L. van der Laan, , M.A. Burns, , T.F. Scott, : Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8 (8), 899- 904 (2019)
https://doi.org/10.1021/acsmacrolett.9b00412
14 T. Schlotthauer, , J. Nitsche, , P. Middendorf, : Evaluation of UV post-curing depth for homogenous cross-linking of stereolithography parts. Rapid Prototyping J. 27 (10), 1910- 1916 (2021)
https://doi.org/10.1108/RPJ-12-2020-0309
15 Y. Zhang, , X. Sun, , P.J. Aphalo, , Y. Zhang, , R. Cheng, , T. Li, : Ultraviolet-A1 radiation induced a more favorable light-intercepting leaf-area display than blue light and promoted plant growth. Plant Cell Environ. 47 (1), 197- 212 (2024)
https://doi.org/10.1111/pce.14727
16 N. Mariz-Ponte, , R.J. Mendes, , S. Sario, , C.V. Correia, , C.M. Correia, , J. Moutinho-Pereira, , P. Melo, , M.C. Dias, , C. Santos, : Physiological, biochemical and molecular assessment of UV-A and UV-B supplementation in solanum lycopersicum. Plants 10 (5), 918 (2021)
https://doi.org/10.3390/plants10050918
17 J.F. Rabek, : Polymer photodegradation. Springer Netherlands, Dordrecht (1995)
https://doi.org/10.1007/978-94-011-1274-1
18 A. Rajan, , G. Kaur, , A. Paliwal, , H.K. Yadav, , V. Gupta, , M. Tomar, : Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors. J. Phys. D Appl. Phys. 47 (42), 425102 (2014)
https://doi.org/10.1088/0022-3727/47/42/425102
19 L. Sang, , M. Liao, , M. Sumiya, : A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors (Basel) 13 (8), 10482- 10518 (2013)
https://doi.org/10.3390/s130810482
20 Q. Ye, , X. Zhang, , R. Yao, , D. Luo, , X. Liu, , W. Zou, , C. Guo, , Z. Xu, , H. Ning, , J. Peng, : Research and progress of transparent, flexible tin oxide ultraviolet photodetector. Crystals (Basel) 11 (12), 1479 (2021)
https://doi.org/10.3390/cryst11121479
21 X. Zhou, , Z. Lu, , L. Zhang, , Q. Ke, : Wide-bandgap all-inorganic lead-free perovskites for ultraviolet photodetectors. Nano Energy 117, 108908 (2023)
https://doi.org/10.1016/j.nanoen.2023.108908
22 W. Zou, , M. Sastry, , J.J. Gooding, , R. Ramanathan, , V. Bansal, : Recent advances and a roadmap to wearable UV sensor technologies. Adv. Mater. Technol. 5 (4), 1901036 (2020)
https://doi.org/10.1002/admt.201901036
23 V.G. Kanellis, : Ultraviolet radiation sensors: a review. Biophys. Rev. 11 (6), 895- 899 (2019)
https://doi.org/10.1007/s12551-019-00556-9
24 X. Huang, , A.N. Chalmers, : Review of wearable and portable sensors for monitoring personal solar UV exposure. Ann. Biomed. Eng. 49 (3), 964- 978 (2021)
https://doi.org/10.1007/s10439-020-02710-x
25 Z. Zhang, , Y. Geng, , S. Cao, , Z. Chen, , H. Gao, , X. Zhu, , X. Zhang, , Y. Wu, : Ultraviolet photodetectors based on polymer microwire arrays toward wearable medical devices. ACS Appl. Mater. Interfaces 14 (36), 41257- 41263 (2022)
https://doi.org/10.1021/acsami.2c04169
26 A. Henning, , J.N. Downs, , J.K. Vanos, : Wearable ultraviolet radiation sensors for research and personal use. Int. J. Biometeorol. 66, 627- 640 (2022)
https://doi.org/10.1007/s00484-021-02216-8
27 P. Zhang, , S. Carrillo Segura, , A. Boldini, , P. Di Trolio, , O.J., III. Ohanian, , M. Porfiri, : A photochromic nylon webbing for ultra-violet light sensing. Smart Mater. Struct. 30 (8), 085015 (2021)
https://doi.org/10.1088/1361-665X/ac093c
28 W. Wang, , S. Tian, , J. Lu, , Y. Zheng, , Z. Yan, , D. Wang, : Highly sensitive photoresponsive polyamide 6 nanofibrous membrane containing embedded spiropyran. J. Mater. Sci. 56 (33), 18775- 18794 (2021)
https://doi.org/10.1007/s10853-021-06505-w
29 B. Bao, , J. Fan, , W. Wang, , D. Yu, : Photochromic cotton fabric prepared by spiropyran-ternimated water polyurethane coating. Fibers Polym. 21 (4), 733- 742 (2020)
https://doi.org/10.1007/s12221-020-9749-3
30 H. Araki, , J. Kim, , S. Zhang, , A. Banks, , K.E. Crawford, , X. Sheng, , P. Gutruf, , Y. Shi, , R.M. Pielak, , J.A. Rogers, : Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities. Adv. Funct. Mater. 27 (2), 1604465 (2017)
https://doi.org/10.1002/adfm.201604465
31 Y. Qi, , J. Zheng, : An Azo-PDMS-based wearable UV sensor with the optimized photo response mode for dual sensing and synchronous detection. Sci. China Technol. Sci. 65, 179- 190 (2021)
https://doi.org/10.1007/s11431-021-1823-9
32 Y. Chen, , Z. Cao, , J. Zhang, , Y. Liu, , D. Yu, , X. Guo, : Wearable ultraviolet sensor based on convolutional neural network image processing method. Sens. Actuators A Phys. 338, 113402 (2022)
https://doi.org/10.1016/j.sna.2022.113402
33 S. Fan, , Y. Lam, , J. Yang, , X. Bian, , J.H. Xin, : Development of photochromic poly(azobenzene)/PVDF fibers by wet spinning for intelligent textile engineering. Surf. Interfaces 34, 102383 (2022)
https://doi.org/10.1016/j.surfin.2022.102383
34 W. Fang, , E. Sairanen, , S. Vuori, , M. Rissanen, , I. Norrbo, , M. Lastusaari, , H. Sixta, : UV-sensing cellulose fibers manufactured by direct incorporation of photochromic minerals. ACS Sustain. Chem. & Eng. 9 (48), 16338- 16346 (2021)
https://doi.org/10.1021/acssuschemeng.1c05938
35 A.S. Finny, , C. Jiang, , S. Andreescu, : 3D printed hydrogel-based sensors for quantifying UV exposure. ACS Appl. Mater. Interfaces 12 (39), 43911- 43920 (2020)
https://doi.org/10.1021/acsami.0c12086
36 M.E. Lee, , A.M. Armani, : Flexible UV exposure sensor based on UV responsive polymer. ACS Sens. 1 (10), 1251- 1255 (2016)
https://doi.org/10.1021/acssensors.6b00491
37 Z. Yang, , J. Zhao, , C. Liang, , H. Jiang, : Materials and device design for epidermal UV sensors with real-time, skin-color specific, and naked-eye quasi-quantitative monitoring capabilities. Adv. Mater. Technol. 8 (7), 2201481 (2023)
https://doi.org/10.1002/admt.202201481
38 T. Yimyai, , D. Crespy, , A. Pena-Francesch, : Self-healing photochromic elastomer composites for wearable UV-sensors. Adv. Funct. Mater. 33 (20), 2213717 (2023)
https://doi.org/10.1002/adfm.202213717
39 G.Y. Chen, , Z. Wang, : Towards extremely sensitive ultravioletlight sensors employing photochromic optical microfiber. J. Sens. 2015, 1- 7 (2015)
https://doi.org/10.1155/2015/586318
40 K. Ock, , N. Jo, , J. Kim, , S. Kim, , K. Koh, : Thin film optical waveguide type UV sensor using a photochromic molecular device, spirooxazine. Synth. Met. 117 (1-3), 131- 133 (2001)
https://doi.org/10.1016/S0379-6779(00)00553-1
41 I.S. Song, , C.Y. Kim, , A.R. Han, , J.S. Yoo, , S.Y. Lee, , H.K. Kim, , T.J. Ahn, : Azobenzene polymer waveguide for UV sensors. In: 2012 Photonics Global Conference (PGC). IEEE, Singapore. pp. 1- 3 (2012)
https://doi.org/10.1109/PGC.2012.6458028
42 J.K. Yoon, , G.W. Seo, , K.M. Cho, , E.S. Kim, , S.H. Kim, , S.W. Kang, : Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer. IEEE Photonics Technol. Lett. 15 (6), 837- 839 (2003)
https://doi.org/10.1109/LPT.2003.811341
43 L. Kortekaas, , W.R. Browne, : The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 48 (12), 3406- 3424 (2019)
https://doi.org/10.1039/C9CS00203K
44 R. Klajn, : Spiropyran-based dynamic materials. Chem. Soc. Rev. 43 (1), 148- 184 (2014)
https://doi.org/10.1039/C3CS60181A
45 J.C. Crano, , R.J. Guglielmetti, : eds.: Chapter 2: photodegradation of organic photochromes. In: Organic Photochromic and Thermochromic Compounds Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism, Kluwer Academic Publishers, New York. pp. 65- 166 (2002)
46 F. Virlogeux, , D. Bianchini, , F. Delor-Jestin, , M. Baba, , J. Lacoste, : Evaluation of cross-linking after accelerated photo-ageing of silicone rubber. Polym. Int. 53 (2), 163- 168 (2004)
https://doi.org/10.1002/pi.1329
47 I. Stevenson, , L. David, , C. Gauthier, , L. Arambourg, , J. Davenas, , G. Vigier, : Influence of SiO2 fillers on the irradiation ageing of silicone rubbers. Polymer (Guildf.) 42 (22), 9287- 9292 (2001)
https://doi.org/10.1016/S0032-3861(01)00470-0
48 V.I. Minkin, : Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 104 (5), 2751- 2776 (2004)
https://doi.org/10.1021/cr020088u
49 E. Berman, , R.E. Fox, , F.D. Thomson, : Photochromic spiropyrans. I. The effect of substituents on the rate of ring closure. J. Am. Chem. Soc. 81 (21), 5605- 5608 (1959)
https://doi.org/10.1021/ja01530a021
50 The Dow Chemical Company : Technical Data Sheet: SYLGARDTM 184 Silicone Elastomer (2017)
51 C.U. Yu, , J.E. Mark, : Specific solvent effects in swollen polymer networks. Macromolecules 7 (2), 229- 232 (1974)
https://doi.org/10.1021/ma60038a015
52 D. Kim, , S.H. Kim, , J.Y. Park, : Floating-on-water fabrication method for thin polydimethylsiloxane membranes. Polymers (Basel) 11 (8), 1264 (2019)
https://doi.org/10.3390/polym11081264
53 Y.S. Nam, , I. Yoo, , O. Yarimaga, , I.S. Park, , D.H. Park, , S. Song, , J.M. Kim, , C.W. Lee, : Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing. Chem. Commun. (Camb.) 50 (32), 4251- 4254 (2014)
https://doi.org/10.1039/C4CC00567H
54 W. Tian, , J. Tian, : An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions. Dyes Pigments 105, 66- 74 (2014)
https://doi.org/10.1016/j.dyepig.2014.01.020
55 C. Qiao, , C. Zhang, , Z. Zhou, , H. Dong, , Y. Du, , J. Yao, , Y.S. Zhao, : A photoisomerization-activated intramolecular chargetransfer process for broadband-tunable single-mode microlasers. Angew. Chem. Int. Ed. 59 (37), 15992- 15996 (2020)
https://doi.org/10.1002/anie.202007361
56 B.H. Wallikewitz, , G.O. Nikiforov, , H. Sirringhaus, , R.H. Friend, : A nanoimprinted, optically tuneable organic laser. Appl. Phys. Lett. 100 (17), 173301 (2012)
https://doi.org/10.1063/1.4705303
57 L. Lin, , M. Wang, , X. Wei, , X. Peng, , C. Xie, , Y. Zheng, : Photoswitchable Rabi splitting in hybrid plasmon-waveguide modes. Nano Lett. 16 (12), 7655- 7663 (2016)
https://doi.org/10.1021/acs.nanolett.6b03702
58 Y.B. Zheng, , B. Kiraly, , S. Cheunkar, , T.J. Huang, , P.S. Weiss, : Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. Nano Lett. 11 (5), 2061- 2065 (2011)
https://doi.org/10.1021/nl200524b
59 D. Cai, , H.M. Heise, : Spectroscopic aspects of polydimethylsiloxane (PDMS) used for optical waveguides. In: Koleżyński, A., Król, M. (eds.) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics. Springer, Switzerland. pp. 401- 425 (2019)
https://doi.org/10.1007/978-3-030-01355-4_13
60 K. Sharma, , E. Morlec, , S. Valet, , M. Camenzind, , B. Weisse, , R.M. Rossi, , F. Sorin, , L.F. Boesel, : Polydimethylsiloxane based soft polymer optical fibers: from the processing-property relationship to pressure sensing applications. Mater. Des. 232, 112115 (2023)
https://doi.org/10.1016/j.matdes.2023.112115
61 J.S. Kee, , D.P. Poenar, , P. Neuzil, , L. Yobas, : Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens. Actuators B Chem. 134 (2), 532- 538 (2008)
https://doi.org/10.1016/j.snb.2008.05.040
62 I. Papakonstantinou, , K. Wang, , D.R. Selviah, , F.A. Fernández, : Transition, radiation and propagation loss in polymer multimode waveguide bends. Opt. Express 15 (2), 669 (2007)
https://doi.org/10.1364/OE.15.000669
63 M. Suar, , M. Baran, , A. Günther, , B. Roth, : Combined thermomechanical and optical simulations of planar-optical polymer waveguides. J. Opt. 22 (12), 125801 (2020)
https://doi.org/10.1088/2040-8986/abc087
64 A. Günther, , M. Baran, , R. Garg, , B. Roth, , W. Kowalsky, : Analysis of the thermal behavior of self-written waveguides. Opt. Lasers Eng. 151, 106922 (2022)
https://doi.org/10.1016/j.optlaseng.2021.106922
65 Z. Zhang, , P. Zhao, , P. Lin, , F. Sun, : Thermo-optic coefficients of polymers for optical waveguide applications. Polymer (Guildf.) 47 (14), 4893- 4896 (2006)
https://doi.org/10.1016/j.polymer.2006.05.035
66 Z. Zhu, , L. Liu, , Z. Liu, , Y. Zhang, , Y. Zhang, : Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 42 (15), 2948 (2017)
https://doi.org/10.1364/OL.42.002948
67 Information about Dow Corning brand Silicone Encapsulants . Dow Corning Corporation, USA (2005)
68 N.S. Gupta, , K.S. Lee, , A. Labouriau, : Tuning thermal and mechanical properties of polydimethylsiloxane with carbon fibers. Polymers (Basel) 13 (7), 1141 (2021)
https://doi.org/10.3390/polym13071141
69 A. Müller, , M.C. Wapler, , U. Wallrabe, : A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 15 (4), 779- 784 (2019)
https://doi.org/10.1039/C8SM02105H
70 G. Zhang, , Y. Sun, , B. Qian, , H. Gao, , D. Zuo, : Experimental study on mechanical performance of polydimethylsiloxane (PDMS) at various temperatures. Polym. Test. 90, 106670 (2020)
https://doi.org/10.1016/j.polymertesting.2020.106670
71 J.S. Lin, : Interaction between dispersed photochromic compound and polymer matrix. Eur. Polym. J. 39 (8), 1693- 1700 (2003)
https://doi.org/10.1016/S0014-3057(03)00058-2
72 J. Sworakowski, , K. Janus, , S. Nešpůrek, : Kinetics of photochromic reactions in condensed phases. Adv. Colloid Interface Sci. 116 (1-3), 97- 110 (2005)
https://doi.org/10.1016/j.cis.2005.04.003
[1] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed