Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 26    https://doi.org/10.1007/s12200-024-00127-1
Contactless integrated photonic probes: fundamentals, characteristics, and applications
Guangze Wu1,2, Yuanjian Wan1,2, Zhao Wang3,4, Xiaolong Hu3,4, Jinwei Zeng1,2, Yu Zhang1,2, Jian Wang1,2()
1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Optics Valley Laboratory, Wuhan 430074, China
3. School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China
4. Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, Tianjin 300072, China
 Download: PDF(7089 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits (PICs). Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide, which leads to significant loss. Due to its advantages like non-invasive nature, miniaturization, and complementary metal-oxide-semiconductor (CMOS) process compatibility, a transparent monitor named the contactless integrated photonic probe (CLIPP), has been attracting great attention in recent years. The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption (SSA) effect. In this review, we first introduce the fundamentals of the CLIPP including the concept, the equivalent electric model and the impedance read-out method, and then summarize some characteristics of the CLIPP. Finally, the functional applications of the CLIPP on the identification and feedback control of optical signal are discussed, followed by a brief outlook on the prospects of the CLIPP.

Keywords Contactless integrated photonic probes      Photonic integrated circuits      Silicon photonics      Optical monitoring      Feedback control     
Corresponding Author(s): Jian Wang   
About author:

#These authors contributed equally to this work.

Issue Date: 08 August 2024
 Cite this article:   
Guangze Wu,Yuanjian Wan,Zhao Wang, et al. Contactless integrated photonic probes: fundamentals, characteristics, and applications[J]. Front. Optoelectron., 2024, 17(3): 26.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00127-1
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/26
1 D. Miller,: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97 (7), 1166- 1185 (2009)
https://doi.org/10.1109/JPROC.2009.2014298
2 Y. Shen,, N.C. Harris,, S. Skirlo,, M. Prabhu,, T. Baehr-Jones,, M. Hochberg,, X. Sun,, S. Zhao,, H. Larochelle,, D. Englund,, M. Soljačić,: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11 (7), 441- 446 (2017)
https://doi.org/10.1038/nphoton.2017.93
3 M.S. Luchansky,, R.C. Bailey,: Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J. Am. Chem. Soc. 133 (50), 20500- 20506 (2011)
https://doi.org/10.1021/ja2087618
4 J.W. Silverstone,, D. Bonneau,, K. Ohira,, N. Suzuki,, H. Yoshida,, N. Iizuka,, M. Ezaki,, C.M. Natarajan,, M.G. Tanner,, R.H. Hadfield,, V. Zwiller,, G.D. Marshall,, J.G. Rarity,, J.L. O’Brien,, M.G. Thompson,: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8 (2), 104- 108 (2014)
https://doi.org/10.1038/nphoton.2013.339
5 J. Sun,, E. Timurdogan,, A. Yaacobi,, E.S. Hosseini,, M.R. Watts,: Large-scale nanophotonic phased array. Nature 493 (7431), 195- 199 (2013)
https://doi.org/10.1038/nature11727
6 K. Padmaraju,, K. Bergman,: Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3 (4-5), 269- 281 (2014)
https://doi.org/10.1515/nanoph-2013-0013
7 A. Gazman,, C. Browning,, Z. Zhu,, L.R. Barry,, K. Bergman,: Automated thermal stabilization of cascaded silicon photonic ring resonators for reconfigurable WDM applications. In: 2017 European Conference on Optical Communication (ECOC). IEEE, 1- 3 (2017)
https://doi.org/10.1109/ECOC.2017.8345963
8 D.A.B. Miller,: Reconfigurable add-drop multiplexer for spatial modes. Opt. Express. 21 (17), 20220 (2023)
https://doi.org/10.1364/OE.21.020220
9 F. Morichetti,, S. Grillanda,, M. Carminati,, G. Ferrari,, M. Sampietro,, M.J. Strain,, M. Sorel,, A. Melloni,: Non-invasive onchip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20 (4), 292- 301 (2014)
https://doi.org/10.1109/JSTQE.2014.2300046
10 D. Melati,, M. Carminati,, S. Grillanda,, G. Ferrari,, F. Morichetti,, M. Sampietro,, A. Melloni,: ContactLess Integrated Photonic Probe for light monitoring in indium phosphide-based devices. IET Optoelectron. 9 (4), 146- 150 (2015)
https://doi.org/10.1049/iet-opt.2014.0159
11 M. Carminati,, A. Annoni,, F. Morichetti,, E. Guglielmi,, G. Ferrari,, D.O.M. De Aguiar,, A. Melloni,, M. Sampietro,: Design guidelines for contactless integrated photonic probes in dense photonic circuits. J. Lightwave Technol. 35 (14), 3042- 3049 (2017)
https://doi.org/10.1109/JLT.2017.2710268
12 P. Ciccarella,, M. Carminati,, G. Ferrari,, D. Bianchi,, S. Grillanda,, F. Morichetti,, A. Melloni,, M. Sampietro,: Impedance-sensing CMOS chip for noninvasive light detection in integrated photonics. IEEE Trans. Circuits Syst., II Express Briefs 63 (10), 929- 933 (2016)
https://doi.org/10.1109/TCSII.2016.2538338
13 A. Annoni,, D. Oliveira De Aguiar,, A. Melloni,, E. Guglielmi,, M. Carminati,, G. Ferrari,, A. Buchheit,, H.D. Wiemhöfer,, M. Muñoz-Castro,, C. Klitis,, M. Sorel,, F. Morichetti,: Noninvasive monitoring and control in silicon photonics. In: 102490F (2017)
https://doi.org/10.1117/12.2268880
14 Z. Zhang,, Z. Wang,, K. Zou,, T. Yang,, X. Hu,: Temperature-dependent characteristics of infrared photodetectors based on surface-state absorption in silicon. Appl. Opt. 60 (30), 9347 (2021)
https://doi.org/10.1364/AO.440736
15 M. Casalino,, G. Coppola,, M. Iodice,, I. Rendina,, L. Sirleto,: Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors (Basel) 10 (12), 10571- 10600 (2010)
https://doi.org/10.3390/s101210571
16 Z. Wang,, Z. Zhang,, K. Zou,, Y. Meng,, H. Liu,, X. Hu,: Noise properties of contactless integrated photonic probes on silicon waveguides. Appl. Opt. 62 (1), 178 (2023)
https://doi.org/10.1364/AO.479555
17 V. Grimaldi,, F. Zanetto,, F. Toso,, C. De Vita,, G. Ferrari,: Non-invasive light sensor with enhanced sensitivity for photonic integrated circuits. In: 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). IEEE, 285- 288 (2022)
https://doi.org/10.1109/PRIME55000.2022.9816838
18 M. Carminati,, S. Grillanda,, P. Ciccarella,, G. Ferrari,, M.J. Strain,, M. Sampietro,, A. Melloni,, F. Morichetti,: Fiber-to-wave-guide alignment assisted by a transparent integrated light monitor. IEEE Photonics Technol. Lett. 27 (5), 510- 513 (2015)
https://doi.org/10.1109/LPT.2014.2383495
19 S. Grillanda,, F. Morichetti,, N. Peserico,, P. Ciccarella,, A. Annoni,, M. Carminati,, A. Melloni,: Non-invasive monitoring of mode-division multiplexed channels on a silicon photonic chip. J. Lightwave Technol. 33 (6), 1197- 1201 (2015)
https://doi.org/10.1109/JLT.2014.2377558
20 D.O.M. De Aguiar,, M. Milanizadeh,, E. Guglielmi,, F. Zanetto,, G. Ferrari,, M. Sampietro,, F. Morichetti,, A. Melloni,: Automatic tuning of silicon photonics microring filter array for hitless reconfigurable add-drop. J. Lightwave Technol. 37 (16), 3939- 3947 (2019)
https://doi.org/10.1109/JLT.2019.2916473
21 A. Annoni,, E. Guglielmi,, M. Carminati,, S. Grillanda,, P. Ciccarella,, G. Ferrari,, M. Sorel,, M.J. Strain,, M. Sampietro,, A. Melloni,, F. Morichetti,: Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22 (6), 169- 176 (2016)
https://doi.org/10.1109/JSTQE.2016.2551943
22 A. Annoni,, E. Guglielmi,, M. Carminati,, G. Ferrari,, M. Sampietro,, D.A. Miller,, A. Melloni,, F. Morichetti,: Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6 (12), e17110 (2017)
https://doi.org/10.1038/lsa.2017.110
23 D. Aguiar,, A. Annoni,, E. Guglielmi,, F. Zanetto,, M. Sampietro,, A. Melloni,, F. Morichetti,: On-chip OSNR monitoring with silicon photonics transparent detector. IEEE Photonics Technol. Lett. 29 (24), 2155- 2158 (2017)
https://doi.org/10.1109/LPT.2017.2765826
24 S. Grillanda,, M. Carminati,, F. Morichetti,, P. Ciccarella,, A. Annoni,, G. Ferrari,, M. Strain,, M. Sorel,, M. Sampietro,, A. Melloni,: Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1 (3), 129 (2014)
https://doi.org/10.1364/OPTICA.1.000129
25 S. Grillanda,, R. Ji,, F. Morichetti,, M. Carminati,, G. Ferrari,, E. Guglielmi,, N. Peserico,, A. Annoni,, A. Dede,, D. Nicolato,, A. Vannucci,, C. Klitis,, B. Holmes,, M. Sorel,, S. Fu,, J. Man,, L. Zeng,, M. Sampietro,, A. Melloni,: Wavelength locking of silicon photonics multiplexer for DML-based WDM transmitter. J. Lightwave Technol. 35 (4), 607- 614 (2017)
https://doi.org/10.1109/JLT.2016.2641163
26 F. Zanetto,, V. Grimaldi,, M. Moralis-Pegios,, S. Pitris,, K. Fotiadis,, T. Alexoudi,, E. Guglielmi,, D. Aguiar,, P. De Heyn,, Y. Ban,, J. Van Campenhout,, N. Pleros,, G. Ferrari,, M. Sampietro,, A. Melloni,: WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J. Lightwave Technol. 38 (21), 6000- 6006 (2020)
https://doi.org/10.1109/JLT.2020.3008001
27 V. Grimaldi,, F. Zanetto,, F. Toso,, I. Roumpos,, T. Chrysostomidis,, A. Perino,, M. Petrini,, F. Morichetti,, A. Melloni,, N. Pleros,, M. Moralis-Pegios,, K. Vyrsokinos,, G. Ferrari,, M. Sampietro,: Self-stabilized 50 Gb/s silicon photonic microring modulator using a power-independent and calibration-free control loop. J. Lightwave Technol. 41 (1), 218- 225 (2023)
https://doi.org/10.1109/JLT.2022.3210756
28 I. Roumpos,, T. Chrysostomidis,, V. Grimaldi,, F. Zanetto,, F. Toso,, P.D. Heyn,, Y. Ban,, J.V. Campenhout,, G. Ferrari,, M. Sampietro,, F. Morichetti,, A. Melloni,, T. Alexoudi,, N. Pleros,, M. Moralis-Pegios,, K. Vyrsokinos,: Temperature and wavelength drift tolerant WDM transmission and routing in on-chip silicon photonic interconnects. Opt. Express 30 (15), 26628 (2022)
https://doi.org/10.1364/OE.455107
29 Z. Wang,, Z. Zhang,, K. Zou,, Y. Meng,, X. Hu,: Silicon fourquadrant photodetector working at the 1550-nm telecommunication wavelength. Opt. Lett. 47 (16), 4048 (2022)
https://doi.org/10.1364/OL.468179
30 T. Baehr-Jones,, T. Pinguet,, P. Lo Guo-Qiang,, S. Danziger,, D. Prather,, M. Hochberg,: Myths and rumours of silicon photonics. Nat. Photonics 6 (4), 206- 208 (2012)
https://doi.org/10.1038/nphoton.2012.66
31 C. Kopp,, S. Bernabé,, B.B. Bakir,, J. Fedeli,, R. Orobtchouk,, F. Schrank,, H. Porte,, L. Zimmermann,, T. Tekin,: Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17 (3), 498- 509 (2011)
https://doi.org/10.1109/JSTQE.2010.2071855
32 L. Qiao,, W. Tang,, T. Chu,: 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7 (1), 42306 (2017)
https://doi.org/10.1038/srep42306
33 D.A.B. Miller,: Self-configuring universal linear optical component. Photon. Res. 1 (1), 1 (2013)
https://doi.org/10.1364/PRJ.1.000001
34 F. Zanetto,, V. Grimaldi,, F. Toso,, E. Guglielmi,, M. Milanizadeh,, D. Aguiar,, M. Moralis-Pegios,, S. Pitris,, T. Alexoudi,, F. Morichetti,, A. Melloni,, G. Ferrari,, M. Sampietro,: Dithering-based real-time control of cascaded silicon photonic devices by means of non-invasive detectors. IET Optoelectron. 15 (2), 111- 120 (2021)
https://doi.org/10.1049/ote2.12019
35 K. Padmaraju,, D.F. Logan,, T. Shiraishi,, J.J. Ackert,, A.P. Knights,, K. Bergman,: Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol. 32 (3), 505- 512 (2014)
https://doi.org/10.1109/JLT.2013.2294564
36 S. Grillanda,, S. Fu,, R. Ji,, F. Morichetti,, N. Peserico,, I. Belladelli,, M. Carminati,, G. Ferrari,, M. Sampietro,, A. Dentin,, A. Dedè,, A. Vannucci,, B. Holmes,, C. Klitis,, M. Sorel,, A. Melloni,: Wavelength locking platform for DML-based multichannel transmitter on a silicon chip. In: Optical Fiber Communication Conference. OSA, W1E.2 (2016)
https://doi.org/10.1364/OFC.2016.W1E.2
37 S. Fu,, L. Zeng,, R. Ji,, S. Grillanda,, F. Morichetti,, M. Carminati,, M. Sampietro,, A. Dentin,, A. Dede,, A. Vannucci,, A. Melloni,: Automatic control of the silicon microring OSR and multiplexer in DML-based WDM transmitter for 40G TWDM-PON OLT. In: 2016 IEEE 13th International Conference on Group IV Photonics (GFP). IEEE 182- 183 (2016)
https://doi.org/10.1109/GROUP4.2016.7739107
38 M. Moralis-Pegios,, F. Zanetto,, E. Guglielmi,, V. Grimaldi,, K. Fotiadis,, S. Pitris,, T. Alexoudi,, P. De Heyn,, Y. Ban,, J. Van Campenhout,, D. Aguiar,, G. Ferrari,, M. Sampietro,, A. Melloni,, N. Pleros,: Automated thermal drift compensation in WDM-based silicon photonic multi-socket interconnect systems. In: Optical Fiber Communication Conference (OFC) 2020. Optica Publishing Group, W3G.2 (2020)
https://doi.org/10.1364/OFC.2020.W3G.2
39 I. Roumpos,, T. Chrysostomidis,, V. Grimaldi,, F. Zanetto,, F. Toso,, P. De Heyn,, Y. Ban,, J. Van Campenhout,, G. Ferrari,, M. Sampietro,, F. Morichetti,, A. Melloni,, K. Vyrsokinos,, T. Alexoudi,, N. Pleros,, M. Moralis-Pegios,: Temperature tolerant on-chip WDM silicon photonic transmitter and AWGR-based routing interconnects. In: Optical Fiber Communication Conference (OFC) 2022. Optica Publishing Group, W4H.2 (2022)
https://doi.org/10.1364/OFC.2022.W4H.2
40 M. Milanizadeh,, S.M. SeyedinNavadeh,, F. Zanetto,, V. Grimaldi,, C. De Vita,, C. Klitis,, M. Sorel,, G. Ferrari,, D.A.B. Miller,, A. Melloni,, F. Morichetti,: Separating arbitrary free-space beams with an integrated photonic processor. Light Sci. Appl. 11 (1), 197 (2022)
https://doi.org/10.1038/s41377-022-00884-8
41 M. Milanizadeh,, P. Borga,, F. Morichetti,, D.A.B. Miller,, A. Melloni,: Manipulating free-space optical beams with a silicon photonic mesh. In: 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE 1- 2 (2019)
https://doi.org/10.1109/PHOSST.2019.8795053
42 Z. Wang,, H. Liu,, Z. Zhang,, K. Zou,, X. Hu,: Infrared photoconductor based on surface-state absorption in silicon. Opt. Lett. 46 (11), 2577 (2021)
https://doi.org/10.1364/OL.426316
43 Z. Wang,, H. Liu,, Z. Zhang,, K. Zou,, X. Hu,: Normal-incidence infrared silicon photodetectors based on surface-state absorption and their applications. In: Conference on Lasers and Electro-Optics. Optica Publishing Group, JW3B.26 (2022)
https://doi.org/10.1364/CLEO_AT.2022.JW3B.26
[1] Huaqing Qiu, Yong Liu, Xiansong Meng, Xiaowei Guan, Yunhong Ding, Hao Hu. Energy-efficient integrated silicon optical phased array[J]. Front. Optoelectron., 2023, 16(3): 23-.
[2] Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin. Co-packaged optics (CPO): status, challenges, and solutions[J]. Front. Optoelectron., 2023, 16(1): 1-.
[3] Haiyan Luo, Lu Xu, Jie Yan, Qiansheng Wang, Wenwu Wang, Xi Xiao. High-resolution silicon photonic sensor based on a narrowband microwave photonic filter[J]. Front. Optoelectron., 2023, 16(1): 4-.
[4] Xudong Gao, Zhenzhu Xu, Yupeng Zhu, Chengkun Yang, Shoubao Han, Zongming Duan, Fan Zhang, Jianji Dong. Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum[J]. Front. Optoelectron., 2023, 16(1): 6-.
[5] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[6] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[7] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[8] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[9] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[10] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[11] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[12] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[13] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[14] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[15] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed