Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 29    https://doi.org/10.1007/s12200-024-00132-4
Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid
Xinxian Zhang1, Jiawei Song2, Jiahao Fan1, Nan Zeng1(), Honghui He1, Valery V. Tuchin3, Hui Ma4,5
1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
2. School of Teacher Education, Nanjing Normal University, Nanjing 210097, China
3. Institute of Physics, Saratov State University, Saratov 410012, Russia
4. Department of Physics, Tsinghua University, Beijing 100084, China
5. Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
 Download: PDF(4706 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D parameters represent the degree of anisotropy. Furthermore, based on GPSE system, a dynamic analysis of skeletal muscle dehydration process demonstrates the monitoring effect of GPSE from an application perspective, while confirming its robustness and accuracy.

Keywords Full polarization      Mueller matrix      Tissue characterization      Optical measurement     
Corresponding Author(s): Nan Zeng   
Issue Date: 09 September 2024
 Cite this article:   
Xinxian Zhang,Jiawei Song,Jiahao Fan, et al. Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid[J]. Front. Optoelectron., 2024, 17(3): 29.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00132-4
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/29
1 H. He,, R. Liao,, N. Zeng,, P. Li,, Z. Chen,, X. Liu,, H. Ma,: Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37(11), 2534–2548 (2019)
https://doi.org/10.1109/JLT.2018.2868845
2 J. Qi,, D.S. Elson,: Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics 10(8), 950–982 (2017)
https://doi.org/10.1002/jbio.201600152
3 V.V. Tuchin,: Polarized light interaction with tissues. J. Biomed. Opt. 21(7), 071114 (2016)
https://doi.org/10.1117/1.JBO.21.7.071114
4 L. Qiu,, D.K. Pleskow,, R. Chuttani,, E. Vitkin,, J. Leyden,, N. Ozden,, S. Itani,, L. Guo,, A. Sacks,, J.D. Goldsmith,, M.D. Modell,, E.B. Hanlon,, I. Itzkan,, L.T. Perelman,: Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat. Med. 16(5), 603–606 (2010)
https://doi.org/10.1038/nm.2138
5 R.S. Gurjar,, V. Backman,, L.T. Perelman,, I. Georgakoudi,, K. Badizadegan,, I. Itzkan,, R.R. Dasari,, M.S. Feld,: Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7(11), 1245–1248 (2001)
https://doi.org/10.1038/nm1101-1245
6 S. Alali,, A. Vitkin,: Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt. 20(6), 061104 (2015)
https://doi.org/10.1117/1.JBO.20.6.061104
7 L. Shih-Yau,, R.A. Chipman,: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13(5), 1106 (1996)
https://doi.org/10.1364/JOSAA.13.001106
8 N. Ghosh,, M.F.G. Wood,, I.A. Vitkin,: Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13(4), 044036 (2008)
https://doi.org/10.1117/1.2960934
9 H. He,, N. Zeng,, E. Du,, Y. Guo,, D. Li,, R. Liao,, H. Ma,: A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photon. Lasers Med. 2(2), 129–137 (2013)
https://doi.org/10.1515/plm-2012-0052
10 V.V. Tuchin,, L.V. Wang,, D.A. Zimnyakov,: Optical polarization in biomedical applications. Springer, Berlin; New York (2006)
11 C.H. Lien,, Z.H. Chen,, Q.H. Phan,: Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry. J. Biomed. Opt. 27(8), 087001 (2022)
https://doi.org/10.1117/1.JBO.27.8.087001
12 Y. Dong,, J. Wan,, L. Si,, Y. Meng,, Y. Dong,, S. Liu,, H. He,, H. Ma,: Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng. 68(3), 881–892 (2021)
https://doi.org/10.1109/TBME.2020.3019755
13 M. Zaffar,, A. Pradhan,: Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl. Opt. 59(4), 1237 (2020)
https://doi.org/10.1364/AO.377105
14 E. Du,, H. He,, N. Zeng,, M. Sun,, Y. Guo,, J. Wu,, S. Liu,, H. Ma,: Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 19(7), 076013 (2014)
https://doi.org/10.1117/1.JBO.19.7.076013
15 Y. Dong,, J. Wan,, X. Wang,, J.H. Xue,, J. Zou,, H. He,, P. Li,, A. Hou,, H. Ma,: A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging 40(12), 3728–3738 (2021)
https://doi.org/10.1109/TMI.2021.3097200
16 I. Ahmad,, M. Ahmad,, K. Khan,, S. Ashraf,, S. Ahmad,, M. Ikram,: Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt. 20(5), 056012 (2015)
https://doi.org/10.1117/1.JBO.20.5.056012
17 D. Ivanov,, V. Dremin,, A. Bykov,, E. Borisova,, T. Genova,, A. Popov,, R. Ossikovski,, T. Novikova,, I. Meglinski,: Colon cancer detection by using Poincaré sphere and 2D polarimetric mapping of ex vivo colon samples. J. Biophoton. 13(8), e202000082 (2020)
https://doi.org/10.1002/jbio.202000082
18 D.L. Le,, D.T. Nguyen,, T.H. Le,, Q.H. Phan,, T.T.H. Pham,: Characterization of healthy and cancerous human skin tissue utilizing Stokes-Mueller polarimetry technique. Opt. Commun. 480, 126460 (2021)
https://doi.org/10.1016/j.optcom.2020.126460
19 Yu.A. Ushenko,, O.V. Dubolazov,, A.O. Karachevtsev,: Statistical structure of skin derma Mueller matrix images in the process of cancer changes. Opt. Mem. Neural. Netw. 20(2), 145–154 (2011)
https://doi.org/10.3103/S1060992X1102010X
20 M. Kim,, H.R. Lee,, R. Ossikovski,, A. Malfait-Jobart,, D. Lamarque,, T. Novikova,: Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Eur. Opt. Soc. Rapid Publ. 18(2), 10 (2022)
https://doi.org/10.1051/jeos/2022011
21 W. Wang,, L.G. Lim,, S. Srivastava,, J. Bok-Yan So,, A. Shabbir,, Q. Liu,: Investigation on the potential of Mueller matrix imaging for digital staining. J. Biophoton. 9(4), 364–375 (2016)
https://doi.org/10.1002/jbio.201500006
22 R. Kodela,, P. Vanagala,: Polarimetric parameters to categorize normal and malignant thyroid tissue. J. Inst. Electron. Telecommun. Eng. 63(6), 893–897 (2017)
https://doi.org/10.1080/03772063.2017.1323562
23 H. He,, M. Sun,, N. Zeng,, E. Du,, S. Liu,, Y. Guo,, J. Wu,, Y. He,, H. Ma,: Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt. 19(10), 106007 (2014)
https://doi.org/10.1117/1.JBO.19.10.106007
24 C. He,, J. Chang,, P. Salter,, Y. Shen,, B. Dai,, P. Li,, Y. Jin,, S. Thodika,, M. Li,, A. Tariq,, J. Wang,, J. Antonello,, Y. Dong,, J. Qi,, J. Lin,, D. Elson,, M. Zhang,, H. He,, H. Hui Ma,, M. Booth,: Revealing complex optical phenomena through vectorial metrics. Adv. Photon. 4(2), 026001 (2022)
https://doi.org/10.1117/1.AP.4.2.026001
25 Y. Wang,, H. He,, J. Chang,, C. He,, S. Liu,, M. Li,, N. Zeng,, J. Wu,, H. Ma,: Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 21(7), 071112 (2016)
https://doi.org/10.1117/1.JBO.21.7.071112
26 B. Chen,, W. Li,, H. He,, C. He,, J. Guo,, Y. Shen,, S. Liu,, T. Sun,, J. Wu,, H. Ma,: Analysis and calibration of linear birefringence orientation parameters derived from Mueller matrix for multilayered tissues. Opt. Lasers Eng. 146, 106690 (2021)
https://doi.org/10.1016/j.optlaseng.2021.106690
27 Y. Dong,, J. Qi,, H. He,, C. He,, S. Liu,, J. Wu,, D.S. Elson,, H. Ma,: Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 8(8), 3643 (2017)
https://doi.org/10.1364/BOE.8.003643
28 C. He,, J. Chang,, Q. Hu,, J. Wang,, J. Antonello,, H. He,, S. Liu,, J. Lin,, B. Dai,, D.S. Elson,, P. Xi,, H. Ma,, M.J. Booth,: Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10(1), 4264 (2019)
https://doi.org/10.1038/s41467-019-12286-3
29 M. Sun,, H. He,, N. Zeng,, E. Du,, Y. Guo,, S. Liu,, J. Wu,, Y. He,, H. Ma,: Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5(12), 4223 (2014)
https://doi.org/10.1364/BOE.5.004223
30 J. Song,, N. Zeng,, W. Guo,, J. Guo,, H. Ma,: Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 12(8), 4821 (2021)
https://doi.org/10.1364/BOE.426653
31 H. Zhai,, Y. Sun,, H. He,, B. Chen,, C. He,, Y. Wang,, H. Ma,: Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters. Opt. Lasers Eng. 152, 106955 (2022)
https://doi.org/10.1016/j.optlaseng.2022.106955
32 O. Rodríguez-Núñez,, P. Schucht,, E. Hewer,, T. Novikova,, A. Pierangelo,: Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Biomed. Opt. Express 12(10), 6674 (2021)
https://doi.org/10.1364/BOE.439754
33 M. Borovkova,, A. Bykov,, A. Popov,, A. Pierangelo,, T. Novikova,, J. Pahnke,, I. Meglinski,: Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11(8), 4509 (2020)
https://doi.org/10.1364/BOE.396294
34 Z. Zhang,, R. Hao,, C. Shao,, C. Mi,, H. He,, C. He,, E. Du,, S. Liu,, J. Wu,, H. Ma,: Analysis and optimization of aberration induced by oblique incidence for in-vivo tissue polarimetry. Opt. Lett. 48(23), 6136 (2023)
https://doi.org/10.1364/OL.501365
35 B. Kunnen,, C. Macdonald,, A. Doronin,, S. Jacques,, M. Eccles,, I. Meglinski,: Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 8(4), 317–323 (2015)
https://doi.org/10.1002/jbio.201400104
36 Y. Chen,, J. Chu,, F. Lin,, B. Jiang,, Y. Liu,, B. Huang,, R. Zhang,, B. Xin,, X. Ding,: Polarization clustering of biological structures with Mueller matrix parameters. J. Biophoton. 16(2), e202200255 (2023)
https://doi.org/10.1002/jbio.202200255
37 M.A. Borovkova,, A.V. Bykov,, A. Popov,, I.V. Meglinski,: Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincaré sphere. J. Biomed. Opt. 25(5), 1 (2020)
https://doi.org/10.1117/1.JBO.25.5.057001
38 F.C. MacKintosh,, J.X. Zhu,, D.J. Pine,, D.A. Weitz,: Polarization memory of multiply scattered light. Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989)
https://doi.org/10.1103/PhysRevB.40.9342
39 V. Sankaran,, J.T. Walsh,, D.J. Maitland,: Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7(3), 300 (2002)
https://doi.org/10.1117/1.1483318
40 M.D. Singh,, I.A. Vitkin,: Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express 12(11), 6831 (2021)
https://doi.org/10.1364/BOE.438631
41 P. Sun,, Y. Ma,, W. Liu,, C. Xu,, X. Sun,: Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions. J. Opt. 15(5), 055708 (2013)
https://doi.org/10.1088/2040-8978/15/5/055708
42 R. Ossikovski,, J.J. Gil,, I. San José,: Poincaré sphere mapping by Mueller matrices. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30(11), 2291 (2013)
https://doi.org/10.1364/JOSAA.30.002291
43 R.M.A. Azzam,: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2(6), 148 (1978)
https://doi.org/10.1364/OL.2.000148
44 D.H. Goldstein,: Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31(31), 6676 (1992)
https://doi.org/10.1364/AO.31.006676
45 D.H. Goldstein,, R.A. Chipman,: Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7(4), 693 (1990)
https://doi.org/10.1364/JOSAA.7.000693
46 E. Du,, H. He,, N. Zeng,, Y. Guo,, R. Liao,, Y. He,, H. Ma,: Two-dimensional backscattering Mueller matrix of sphere–cylinder birefringence media. J. Biomed. Opt. 17(12), 126016 (2012)
https://doi.org/10.1117/1.JBO.17.12.126016
47 T. Yun,, N. Zeng,, W. Li,, D. Li,, X. Jiang,, H. Ma,: Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express 17(19), 16590 (2009)
https://doi.org/10.1364/OE.17.016590
48 J. Song,, N. Zeng,, H. Ma,, V.V. Tuchin,: A rapid stokes imaging method for characterizing the optical properties of tissue during immersion optical clearing. IEE. J. Sel. Top. Quantum Electron. 29(4), 1–9 (2023)
https://doi.org/10.1109/JSTQE.2022.3197599
49 Z. Liu,, J. Song,, Q. Fu,, N. Zeng,, H. Ma,: Study on anisotropy orientation due to well-ordered fibrous biological microstructures. J. Biomed. Opt. 29(5), 052919 (2024)
https://doi.org/10.1117/1.JBO.29.5.052919
50 J. Song,, Q. Fu,, N. Zeng,, H. Ma,: Microstructural characterization of biological tissues based on sequential Stokes polarization images during dehydration. Opt. Lasers Eng. 177, 108142 (2024)
https://doi.org/10.1016/j.optlaseng.2024.108142
51 J. Song,, W. Guo,, N. Zeng,, H. Ma,: Polarization phase unwrapping by a dual-wavelength Mueller matrix imaging system. Opt. Lett. 48(8), 2058 (2023)
https://doi.org/10.1364/OL.488675
[1] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
[2] Sihua FU, Xuejun LONG, Hui LIN, Qifeng YU. Fringe-contoured-window sine/cosine filter for saw-tooth phase maps in ESPI[J]. Front Optoelec Chin, 2008, 1(3-4): 345-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed