Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (3) : 31    https://doi.org/10.1007/s12200-024-00134-2
Dual-functional application of Ca2Ta2O7: Bi3+/Eu3+ phosphors in multicolor tunable optical thermometry and WLED
Jingjing Ru1(), Bing Zhao2(), Fan Zeng1,3, Feiyun Guo4, Jinhua Liu5, Jianzhong Chen4
1. College of New Energy and Materials, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China
2. College of Mechanical and Electrical Engineering, Ningde Normal University, Ningde 352100, China
3. School of Environment and Resources, School of Carbon Neutral and Modern Industry, Fujian Normal University, Fuzhou 350007, China
4. College of Chemistry, Fuzhou University, Fuzhou 350108, China
5. School of Pharmacy and Medical Technology, Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, Putian University, Putian 351100, China
 Download: PDF(7243 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of Bi3+/Eu3+ co-doped Ca2Ta2O7 (CTO:Bi3+/Eu3+) phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode (WLED) device. By modulating the doping ratio of Bi3+/Eu3+ and utilizing the energy transfer from Bi3+ to Eu3+, the tunable color emission ranging from green to reddish-orange was realized. The designed CTO:0.04Bi3+/Eu3+ optical thermometers exhibit significant thermochromism, superior stability, and repeatability, with maximum sensitivities of Sa = 0.055 K-1 (at 510 K) and Sr = 1.298% K-1 (at 480 K) within the temperature range of 300–510 K, owing to the different thermal quenching behaviors between Bi3+ and Eu3+ ions. These features indicate the potential application prospects of the prepared samples in visualized thermometer or high-temperature safety marking. Furthermore, leveraging the excellent zero-thermal-quenching performance, outstanding acid/alkali resistance, and color stability of CTO:0.04Bi3+/0.16Eu3+ phosphor, a WLED device with a high Ra value of 95.3 has been realized through its combination with commercially available blue and green phosphors, thereby demonstrating the potential application of CTO:0.04Bi3+/0.16Eu3+ in near-UV pumped WLED devices.

Keywords Phosphor      Energy transfer      Zero-thermal-quenching      Optical thermometry      WLEDs     
Corresponding Author(s): Jingjing Ru,Bing Zhao   
Issue Date: 09 September 2024
 Cite this article:   
Jingjing Ru,Bing Zhao,Fan Zeng, et al. Dual-functional application of Ca2Ta2O7: Bi3+/Eu3+ phosphors in multicolor tunable optical thermometry and WLED[J]. Front. Optoelectron., 2024, 17(3): 31.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00134-2
https://academic.hep.com.cn/foe/EN/Y2024/V17/I3/31
1 J.K. Lee,, Y. Hua,, J.S. Yu,: Reddish-orange-emitting CaLa4Ti4O15: Sm3+ phosphors with good thermal stability for WLED applications. J. Alloys Compd. 960, 170615 (2023)
https://doi.org/10.1016/j.jallcom.2023.170615
2 R.Z. Liu,, H.Y. Wu,, S.W. Wang,, W.H. Yuan,, S. Zhang,, R. Pang,, L. Jiang,, D. Li,, C. Li,, H. Zhang,: Ba3LuGa2O7.5: Bi3+ phosphors with potential application in full-spectrum WLEDs and temperature sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices 11(7), 2653–2663 (2023)
https://doi.org/10.1039/D2TC01386J
3 S.J. Jiao,, R. Pang,, J.T. Wang,, T. Tan,, C.Y. Li,, H.J. Zhang,: A novel bright cyan emitting phosphor of Eu2+ activated Ba6BO3Cl9 with robust thermal stability for full-spectrum WLED applications. Inorg. Chem. Front. 10(6), 1863–1875 (2023)
https://doi.org/10.1039/D3QI00015J
4 J.M. Chan,, L.N. Cao,, Z. Xu,, X.Y. Huang,: Cation substitution induced highly symmetric crystal structure in cyan-green-emitting Ca2La1-xLuxHf2Al3O12:Ce3+ solid-solution phosphors with enhanced photoluminescence emission and thermal stability: toward full-visible-spectrum white LEDs. Mater. Today Phys. 35, 101130 (2023)
https://doi.org/10.1016/j.mtphys.2023.101130
5 F.F. Chi,, Z.C. Ji,, Q. Liu,, B. Jiang,, B. Wang,, J. Cheng,, B. Li,, S. Liu,, X. Wei,: Investigation of multicolor emitting Cs3GdGe3O9: Bi3+, Eu3+ phosphors via energy transfer for WLEDs. Dalton Trans. 52(3), 635–643 (2023)
https://doi.org/10.1039/D2DT03349F
6 P.P. Dang,, Q.Q. Zhang,, D.J. Liu,, G.G. Li,, H.Z. Lian,, M.M. Shang,, J. Lin,: Hetero-valent substitution strategy toward orange-red luminescence in Bi3+ doped layered perovskite oxide phosphors for high color rendering index white light-emitting diodes. Chem. Eng. J. 420, 127640 (2021)
https://doi.org/10.1016/j.cej.2020.127640
7 N. Ma,, W. Li,, B. Devakumar,, X.Y. Huang,: Dazzling red-emitting europium(III) ion-doped Ca2LaHf2Al3O12 garnet-type phosphor materials with potential application in solid state white lighting. Inorg. Chem. 61(18), 6898–6909 (2022)
https://doi.org/10.1021/acs.inorgchem.2c00238
8 X. Qin,, X.W. Liu,, W. Huang,, M. Bettinelli,, X.G. Liu,: Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117(5), 4488–4527 (2017)
https://doi.org/10.1021/acs.chemrev.6b00691
9 L. Cao,, W. Li,, B. Devakumar,, N. Ma,, X.Y. Huang,, A.F. Lee,: Full-spectrum white light-emitting diodes enabled by an efficient broadband green-emitting CaY2ZrScAl3O12: Ce3+ garnet phosphor. ACS Appl. Mater. Interfaces 14(4), 5643–5652 (2022)
https://doi.org/10.1021/acsami.1c23286
10 H. Patnam,, S.K. Hussain,, J.S. Yu,: Rare-earth-free Mn4+ ions activated Ba2YSbO6 phosphors for solid-state lighting, flexible display, and anti-counterfeiting applications. Ceram. Int. 49(2), 2967–2977 (2023)
https://doi.org/10.1016/j.ceramint.2022.09.281
11 Z. Liu,, Y.P. Huang,, T.H. Chen,, W.L. Feng,: Emission enhancement of Eu3+ doped Ba2Zn( BO3)2 by adding charge compensators. J. Solid State Chem. 329, 124431 (2024)
https://doi.org/10.1016/j.jssc.2023.124431
12 J. Guo,, S.C. Li,, J.Y. Kong,, Y.X. Li,, L. Zhou,, L.Y. Lou,, Q. Lv,, R. Tang,, L. Zheng,, B. Deng,, R. Yu,: Synthesis and characterization of a new double perovskite phosphor: NaCaTiTaO6: Dy3+ with high thermal stability for w-LEDs application. Opt. Laser Technol. 155, 108347 (2022)
https://doi.org/10.1016/j.optlastec.2022.108347
13 R.P. Cao,, Z.Y. Huang,, B. Lan,, L. Li,, X.H. Yi,, Z.Y. Luo,, C. Liao,, J. Wang,: Adjustable luminescence properties of Eu3+ and Bi3+ codoped Ca3Zn3Te2O12 phosphor. Mater. Res. Bull. 152, 111851 (2022)
https://doi.org/10.1016/j.materresbull.2022.111851
14 Q. Wu,, M.M. Fu,, C.Z. Gu,, Y.Z. Wang,, L. Yao,, C.L. Wang,: Tunable luminescence and energy transfer in Tb3+, Eu3+ codoped Gd2Zr2O7 phosphors with high thermal stability for WLEDs. J. Alloys Compd. 968, 171909 (2023)
https://doi.org/10.1016/j.jallcom.2023.171909
15 J.W. Qiao,, J. Zhao,, Q.L. Liu,, Z.G. Xia,: Recent advances in solid-state LED phosphors with thermally stable luminescence. J. Rare Earths 37(6), 565–572 (2019)
https://doi.org/10.1016/j.jre.2018.11.001
16 Y.L. Zhu,, X.C. Li,, B.Q. Zhu,, Y.J. Liang,: Design of core-shell phosphors with tunable luminescence and improved thermal stability by coating with g-C3N4. Inorg. Chem. Front. 7(17), 3126–3135 (2020)
https://doi.org/10.1039/D0QI00498G
17 T.X. Yang,, T. Zhang,, S.F. Huang,, T.D. Christopher,, Q.F. Gu,, Y.W. Sui,, P. Cao,: Structure tailoring and defect engineering of LED phosphors with enhanced thermal stability and superior quantum efficiency. Chem. Eng. J. 435, 133873 (2022)
https://doi.org/10.1016/j.cej.2021.133873
18 R.P. Cao,, J.R. Wang,, B.H. Zhong,, T. Chen,, B. Lan,, F.R. Cheng,, R. Liu,, J. Wang,: Energy transfer between two luminous centers and tunable emission of La7Nb3W4O30: Dy3+, Eu3+. J. Phys. Chem. Solids 188, 11925 (2024)
https://doi.org/10.1016/j.jpcs.2024.111925
19 Y. Chen,, B.X. Yu,, J. Gou,, S.F. Liu,: Zero-thermal-quenching and photoluminescence tuning with the assistance of carriers from defect cluster traps. J. Mater. Chem. C Mater. Opt. Electron. Devices. 6(40), 10687–10692 (2018)
https://doi.org/10.1039/C8TC03515F
20 Z.H. Leng,, H. Bai,, Q. Qing,, H.B. He,, J.Y. Hou,, B.Y. Li,, Z. Tang,, F. Song,, H. Wu,: A zero-thermal-quenching blue phosphor for sustainable and human-centric WLED lighting. ACS Sustain. Chem. & Eng. 10(33), 10966–10977 (2022)
https://doi.org/10.1021/acssuschemeng.2c03028
21 X.L. Wu,, R. Shi,, J.L. Zhang,, D.W. Wen,, Z.X. Qiu,, X.G. Zhang,, W. Zhou,, L. Yu,, S. Lian,: Highly efficient and zero-thermal-quenching blue-emitting Eu2+-activated K-beta-alumina phosphors. Chem. Eng. J. 429, 132225 (2022)
https://doi.org/10.1016/j.cej.2021.132225
22 S.H. Wang,, Y.Q. Xu,, T. Chen,, W.H. Jiang,, J.M. Liu,, X. Zhang,, W. Jiang,, L. Wang,: A red phosphor LaSc3(BO3)4:Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs. Chem. Eng. J. 404, 125912 (2021)
https://doi.org/10.1016/j.cej.2020.125912
23 D.Y. Liu,, T. Wang,, Y.C. Liu,, C. Wang,, Z.C. Liu,, X.D. Zhu,, Y. Liu,, J. Zhang,, Z. Teng,, Y. Zhong,, Y.A. Nikolaevich,, X. Xu,: Zero-thermal-quenching of LiAl5O8: Eu2+, Mn2+ phosphors by energy transfer and defects engineering. Ceram. Int. 49(7), 10273–10279 (2023)
https://doi.org/10.1016/j.ceramint.2022.11.207
24 L. Marciniak,, K. Kniec,, K. Elżbieciak-Piecka,, K. Trejgis,, J. Stefanska,, M. Dramićanin,: Luminescence thermometry with transition metal ions. A review. Coord. Chem. Rev. 469, 214671 (2022)
https://doi.org/10.1016/j.ccr.2022.214671
25 Q.W. Ni,, Z.B. Mei,, C.X. Li,, J.Y. Li,, J.C. Liu,, W.Q. Liu,, J. Huo,, Q. Wang,: Realization of an optical thermometer via structural confinement and energy transfer. Inorg. Chem. 60(24), 19315–19327 (2021)
https://doi.org/10.1021/acs.inorgchem.1c03126
26 Y.C. Jiang,, Y. Tong,, S.Y. Chen,, W.N. Zhang,, F.F. Hu,, R.F. Wei,, H. Guo,: A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6: Er3+, Yb3+ phosphors. Chem. Eng. J. 413, 127470 (2021)
https://doi.org/10.1016/j.cej.2020.127470
27 C.J. Chen,, Y.X. Zhuang,, X.Y. Li,, F.Y. Lin,, D.F. Peng,, D. Tu,, A. Xie,, R.J. Xie,: Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials. Adv. Funct. Mater. 31(25), 2101567 (2021)
https://doi.org/10.1002/adfm.202101567
28 Y. Hua,, T. Wang,, J.S. Yu,, P. Du,: Tailoring of strong orangered- emitting materials for luminescence lifetime thermometry, anti-counterfeiting, and solid-state lighting applications. Mater. Today Chem. 25, 100945 (2022)
https://doi.org/10.1016/j.mtchem.2022.100945
29 J.P. Xue,, Z.K. Yu,, H.M. Noh,, B.R. Lee,, B.C. Choi,, S.H. Park,, J.H. Jeong,, P. Du,, M. Song,: Designing multi-mode optical thermometers via the thermochromic LaNbO4: Bi3+/Ln3+ (Ln = Eu, Tb, Dy, Sm) phosphors. Chem. Eng. J. 415, 128977 (2021)
https://doi.org/10.1016/j.cej.2021.128977
30 M.T. Abbas,, N.Z. Khan,, J. Mao,, L. Qiu,, X. Wei,, Y. Chen,, S.A. Khan,: Lanthanide and transition metals doped materials for non-contact optical thermometry with promising approaches. Mater. Today Chem. 24, 100903 (2022)
https://doi.org/10.1016/j.mtchem.2022.100903
31 T. Zheng,, M. Sójka,, P. Woźny,, I.R. Martín,, V. Lavín,, E. Zych,, S. Lis,, P. Du,, L. Luo,, M. Runowski,: Supersensitive ratiometric thermometry and manometry based on dual-emitting centers in Eu2+/ Sm2+-doped strontium tetraborate phosphors. Adv. Opt. Mater. 10(20), 2201055 (2022)
https://doi.org/10.1002/adom.202201055
32 Q.Q. Yin,, X.Y. Sun,, K. Dong,, X.M. Lu,, F. Yang,, X.J. He,, S. Zhong,, Y. Diao,, Y. Wang,: Dual-emitting ratiometric luminescent thermometers based on lanthanide metal-organic complexes with Brønsted acidic ionic liquids. Inorg. Chem. 61(47), 18998–19009 (2022)
https://doi.org/10.1021/acs.inorgchem.2c03323
33 Y.H. Qin,, F. Zhong,, Y.N. Bian,, S. Hariyani,, Y.X. Cao,, J. Brgoch,, T. Seto,, M.G. Brik,, A.M. Srivastava,, X. Wang,, Y. Wang,: Sensitive and reliable fluorescent thermometer based on a red-emitting Li2MgHfO4: Mn4+ phosphor. Inorg. Chem. 61(21), 8126–8134 (2022)
https://doi.org/10.1021/acs.inorgchem.1c03971
34 Y. Hua,, J.S. Yu,, L. Li,: Rare-earth and transition metal ion single-/co-doped double-perovskite tantalate phosphors: validation of suitability for versatile applications. J. Adv. Ceram. 12(5), 954–971 (2023)
https://doi.org/10.26599/JAC.2023.9220731
35 P. Du,, X.Y. Huang,, J.S. Yu,: Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol-gel method. Inorg. Chem. Front. 4(12), 1987–1995 (2017)
https://doi.org/10.1039/C7QI00497D
36 M.H. Liu,, T.T. Li,, D.L. Zhang,: Synthesis and spectroscopic properties of Er3+/Yb3+-codoped GdNbO4 phosphor for thermometry and marine safety protection. Mater. Res. Bull. 154, 111944 (2022)
https://doi.org/10.1016/j.materresbull.2022.111944
37 Y. Xue,, Y.Q. Chen,, G.X. Li,, W.X. Xia,, Q.N. Mao,, L. Pei,, M. Liu,, L. Chu,, J. Zhong,: Bi3+-activated dual-wavelength emitting phosphors toward effective optical thermometry. Chin. Chem. Lett. 35(3), 108447 (2024)
https://doi.org/10.1016/j.cclet.2023.108447
38 Y.F. Xiang,, L. Yang,, C.Y. Liao,, X.F. Xiang,, X.K. Tang,, H.L. Tang,, J. Zhu,: Thermometric properties of Na2Y2TeB2O10: Tb3+ green phosphor based on fluorescence/excitation intensity ratio. J. Adv. Ceram. 12(4), 848–860 (2023)
https://doi.org/10.26599/JAC.2023.9220725
39 L.T. Qiu,, P. Wang,, J.S. Mao,, Z.C. Liao,, F.F. Chi,, Y.H. Chen,, X. Wei,, M. Yin,: Cr3+-doped InTaO4 phosphor for multi-mode temperature sensing with high sensitivity in a physiological temperature range. Inorg. Chem. Front. 9(13), 3187–3199 (2022)
https://doi.org/10.1039/D2QI00660J
40 Y.Q. Chen,, Y. Xue,, Q.N. Mao,, L. Pei,, Y. Ding,, Y.W. Zhu,, M. Liu,, J. Zhong,: Tunable luminescence in Eu3+/Sm3+ single-doped LuNbO4 for optical thermometry and anti-counterfeiting. J. Mater. Chem. C Mater. Opt. Electron. Devices. 11(29), 9974–9983 (2023)
https://doi.org/10.1039/D3TC01780J
41 Y.X. Luo,, L.J. Li,, J.Y. Chen,, S.J. Xu,, T. Pang,, L.P. Chen,, H. Guo,: Dual-mode optical thermometers based on YNbO4: Bi3+, Sm3+ phosphors. Mater. Res. Bull. 164, 112263 (2023)
https://doi.org/10.1016/j.materresbull.2023.112263
42 G.X. Li,, Y. Xue,, Q.N. Mao,, L. Pei,, H. He,, M.J. Liu,, L. Chu,, J. Zhong,: Synergistic luminescent thermometer using co-doped Ca2GdSbO6: Mn4+/(Eu3+ or Sm3+) phosphors. Dalton Trans. 51(12), 4685–4694 (2022)
https://doi.org/10.1039/D2DT00005A
43 Y. Ding,, X.Y. Lu,, S. Maitra,, Y. Wang,, L. Pei,, Q.N. Mao,, M. Liu,, J. Zhong,, D. Chen,: Suppressing self-oxidation of Eu2+ in Li2CaSiO4 for full-spectrum lighting and accurate temperature sensing. Laser Photonics Rev. 2400296 (2024)
44 Y.F. Wu,, H. Suo,, X.Q. Zhao,, Z.W. Zhou,, C.F. Guo,: Self-calibrated optical thermometer LuNbO4: Pr3+/Tb3+ based on intervalence charge transfer transitions. Inorg. Chem. Front. 5(10), 2456–2461 (2018)
https://doi.org/10.1039/C8QI00755A
45 D.X. Liu,, C.Y. Zeng,, J. Wang,, A.X. Liang,, J.L. Zhao,, B.S. Zou,, X. Han,: Site preference induced dual-wavelength Mn2+ upconversion in K2NaScF6: Yb3+, Mn2+ and its application in temperature sensing. Adv. Opt. Mater. 12(14), 2302819 (2024)
46 J.P. Xue,, H.M. Noh,, B.C. Choi,, S.H. Park,, J.H. Kim,, J.H. Jeong,, P. Du,: Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+ → Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors. Chem. Eng. J. 382, 122861 (2020)
https://doi.org/10.1016/j.cej.2019.122861
47 Z.T. Fan,, X.Y. Fan,, J.P. Xue,, Y. Wang,: Designing dual mode of non-contact optical thermometers in double perovskite Ca2LaTaO6: Bi3+, Eu3+ phosphors. Mater. Today Chem. 30, 101528 (2023)
https://doi.org/10.1016/j.mtchem.2023.101528
48 X.B. Zhang,, Y.H. Xu,, X.D. Wu,, S.W. Yin,, C.S. Zhong,, C.X. Wang,, L. Zhou,, H. You,: Optical thermometry and multimode anti-counterfeiting based on Bi3+/Ln3+ and Ln3+ doped Ca2ScSbO6 phosphors. Chem. Eng. J. 481, 148717 (2024)
https://doi.org/10.1016/j.cej.2024.148717
49 S.J. Xu,, J.H. Lei,, L.J. Li,, J.Y. Chen,, L.P. Chen,, H. Guo,: Dualmode optical thermometry of Sr2YNbO6: Bi3+, Eu3+ phosphors designed by response surface methodology. J. Lumin. 255, 119615 (2023)
https://doi.org/10.1016/j.jlumin.2022.119615
50 H. Arfin,, A.S. Kshirsagar,, J. Kaur,, B. Mondal,, Z.G. Xia,, S. Chakraborty,, A. Nag,: ns2 Electron ( Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 32(24), 10255–10267 (2020)
https://doi.org/10.1021/acs.chemmater.0c03394
51 Y.X. Luo,, D.Y. Zhang,, S.J. Xu,, L.J. Li,, L.P. Chen,, H. Guo,: Optical thermometry based on Bi3+, Ln3+ co-doped YNbO4 (Ln = Dy, Eu) phosphors. J. Lumin. 257, 119780 (2023)
https://doi.org/10.1016/j.jlumin.2023.119780
52 Y.H. Wang,, C. Jing,, Z.Y. Ding,, Y.Z. Zhang,, T. Wei,, J.H. Ouyang,, Z.G. Liu,, Y.J. Wang,, Y.M. Wang,: The structure, property, and ion irradiation effects of pyrochlores: a comprehensive review. Crystals (Basel) 13(1), 143 (2023)
https://doi.org/10.3390/cryst13010143
53 M.M. Jiao,, W.Z. Sun,, Y.H. Wang,, S.F. Zhang,, Q.F. Xu,, L.C. Zhang,, D. Wang,, C. Yang,: Luminescence property improvement and controllable color regulation of a novel Bi3+ doped Ca2Ta2O7 green phosphor through charge compensation engineering and energy transfer. Phys. Chem. Chem. Phys. 23(45), 25886–25895 (2021)
https://doi.org/10.1039/D1CP04635G
54 D. Zhao,, Y.N. Li,, R.J. Zhang,, B.Z. Liu,, Q.X. Yao,: Tuning emission from greenish to blue via chemical composition modulation in solid solutions ( Sr1-yCay)2Sb2O7:Bi3+ under near-UV light excitation. ACS Sustain. Chem. & Eng. 9(22), 7569–7577 (2021)
https://doi.org/10.1021/acssuschemeng.1c01396
55 A. George,, S. Gopi,, E. Sreeja,, T. Krishnapriya,, A.C. Saritha,, C. Joseph,, N.V. Unnikrishnan,, P.R. Biju,: Host sensitized tunable luminescence of single phase white light emitting Ca2Sb2O7: Eu3+ phosphors. J. Mater. Sci. Mater. Electron. 31(1), 423–434 (2020)
https://doi.org/10.1007/s10854-019-02545-w
56 X.Y. Shi,, M.H. Zhang,, X.Y. Lu,, Q.N. Mao,, L. Pei,, H. Yu,, J. Zhang,, M. Liu,, J. Zhong,: High sensitivity and multicolor tunable optical thermometry in Bi3+/ Eu3+ co-doped Ca2Sb2O7 phosphors. Mater. Today Chem. 27, 101264 (2023)
https://doi.org/10.1016/j.mtchem.2022.101264
57 C.Y. Wang,, Y.L. Ma,, J.Y. Lang,, Z.L. Chai,, G.S. Li,, X.J. Wang,: A novel heterogeneous photocatalyst for Cr (VI) reduction via planting silicotungstic acid on the surface of calcium tantalate. Mol. Catal. 455, 48–56 (2018)
https://doi.org/10.1016/j.mcat.2018.02.026
58 M.M. Jiao,, Q.F. Xu,, C.L. Yang,, M.L. Liu,: Electronic structure and photoluminescence properties of single component white emitting Sr3LuNa(PO4)3F:Eu2+, Mn2+ phosphor for WLEDs. J. Mater. Chem. C Mater. Opt. Electron. Devices 6(16), 4435–4443 (2018)
https://doi.org/10.1039/C8TC00224J
59 M. Yang,, X.Y. Liu,, T.W. Hou,, L. Du,, Q.H. Wang,, B. Chang,, B. Li,, J. Liu,, G. Deng,, I.V. Kityk,: Synthesis and luminescent properties of GdNbO4: Bi3+ phosphors via high temperature high pressure. J. Alloys Compd. 723, 1–8 (2017)
https://doi.org/10.1016/j.jallcom.2017.06.204
60 Q. Zhang,, X.C. Wang,, X. Ding,, Y.H. Wang,: A potential redemitting phosphor BaZrGe3O9: Eu3+ for WLED and FED applications: synthesis, structure, and luminescence properties. Inorg. Chem. 56(12), 6990–6998 (2017)
https://doi.org/10.1021/acs.inorgchem.7b00591
61 M. Li,, J.X. Wu,, H.L. Jia,, M.T. Wang,, Z.G. Liu,: Luminescence properties and energy transfers of NaLa(WO4)2:Sm3+:Ce3+ phosphor. J. Mater. Sci. Mater. Electron. 30(11), 10465–10474 (2019)
https://doi.org/10.1007/s10854-019-01389-8
62 G. Blasse,: Energy transfer in oxidic phosphors. Phys. Lett. A 28(6), 444–445 (1968)
https://doi.org/10.1016/0375-9601(68)90486-6
63 D.L. Dexter,, J.H. Schulman,: Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22(6), 1063–1070 (1954)
https://doi.org/10.1063/1.1740265
64 Z.W. Yu,, X.Y. Sun,, Z.Q. Wang,: Luminescent properties of Dy3+ and/or Eu3+ doped Mg2Al4Si5O18 phosphors and energy transfer between Dy3+/ Eu3+ ion pairs. J. Lumin. 197, 164–168 (2018)
https://doi.org/10.1016/j.jlumin.2018.01.035
65 Q.F. Guo,, Q.D. Wang,, L.W. Jiang,, L.B. Liao,, H.K. Liu,, L.F. Mei,: A novel apatite, Lu5(SiO4)3N:(Ce, Tb), phosphor material: synthesis, structure and applications for NUV-LEDs. Phys. Chem. Chem. Phys. 18(23), 15545–15554 (2016)
https://doi.org/10.1039/C6CP01512C
66 Y. Wang,, N. Guo,, B.Q. Shao,, C.F. Yao,, R.Z. Ouyang,, Y.Q. Miao,: Adjustable photoluminescence of Bi3+ and Eu3+ in solid solution constructed by isostructural end components through composition and excitation-driven strategy. Chem. Eng. J. 421, 127735 (2021)
https://doi.org/10.1016/j.cej.2020.127735
67 K.Y. Wu,, J.B. Cui,, X.X. Kong,, Y.J. Wang,: Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals. J. Appl. Phys. 110(5), 053510 (2011)
https://doi.org/10.1063/1.3631822
68 Y. Gao,, F. Huang,, H. Lin,, J.C. Zhou,, J. Xu,, Y.S. Wang,: A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv. Funct. Mater. 26(18), 3139–3145 (2016)
https://doi.org/10.1002/adfm.201505332
69 L.J. Li,, Y. Tong,, J. Chen,, Y.H. Chen,, G. Abbas Ashraf,, L.P. Chen,, T. Pang,, H. Guo,: Up-conversion and temperature sensing properties of Na2GdMg2(VO4)3:Yb3+, Er3+ phosphors. J. Am. Ceram. Soc. 105(1), 384–391 (2022)
https://doi.org/10.1111/jace.18070
70 A. Bednarkiewicz,, L. Marciniak,, L.D. Carlos,, D. Jaque,: Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 12(27), 14405–14421 (2020)
https://doi.org/10.1039/D0NR03568H
71 R.F. Wei,, J.L. Guo,, K.J. Li,, L.P. Yang,, X.L. Tian,, X.M. Li,, F. Hu,, H. Guo,: Dual-emitting SrY2O4: Bi3+, Eu3+ phosphor for ratiometric temperature sensing. J. Lumin. 216, 116737 (2019)
https://doi.org/10.1016/j.jlumin.2019.116737
72 K. Qiang,, Y. Ye,, Q. Mao,, F. Chen,, L. Chu,, M. Liu,, J. Zhong,: Dy3+, Mn4+ co-doped phosphors for synergistic luminescent dual-mode thermometer and high-resolution imaging. Mater. Des. 241, 1112906 (2024)
https://doi.org/10.1016/j.matdes.2024.112906
73 D.Y. Huang,, Y. Wei,, P.P. Dang,, X. Xiao,, H.Z. Lian,, J. Lin,: Tunable color emission in LaScO3: Bi3+, Tb3+, Eu3+ phosphor. J. Am. Ceram. Soc. 103(5), 3273–3285 (2020)
https://doi.org/10.1111/jace.17007
74 J.L. Long,, Y.M. Xu,, K. Cheng,, X.Y. Liu,, W.C. Huang,, C.Y. Deng,: A novel multifunctional double perovskite structure phosphor La2MgTiO6: Mn4+, Eu3+. Opt. Mater. 141, 113967 (2023)
https://doi.org/10.1016/j.optmat.2023.113967
75 N. Yang,, Z. Li,, Z.W. Zhang,, W. He,, Z.B. Ye,, W.J. Huang,, J. Shi,, Y. Tong,: A highly thermal-stable red-emitting tantalite sensor dual-applications. Ceram. Int. 50(4), 6880–6891 (2024)
https://doi.org/10.1016/j.ceramint.2023.12.034
76 J.B. Wang,, X.J. Zhou,, G.T. Xiang,, S. Jiang,, L. Li,, Y.J. Wang,, Y. Li,, C. Jing,, L. Yao,, H. Yang,, Y. Huang,, F. Wang,: The explanation of abnormal thermal quenching of the charge transfer band based on thermally coupled levels and applications as temperature sensing probes. Dalton Trans. 51(45), 17224–17234 (2022)
https://doi.org/10.1039/D2DT02744E
77 W. Ullah Khan,, L. Zhou,, X.H. Li,, W.J. Zhou,, D. Khan,, S.I. Niaz,, M. Wu,: Single phase white LED phosphor Ca3YAl3B4O15: Ce3+, Tb3+, Sm3+ with superior performance: color-tunable and energy transfer study. Chem. Eng. J. 410, 128455 (2021)
https://doi.org/10.1016/j.cej.2021.128455
[1] Qi Han, Yadong Jiang, Xianchao Liu, Chaoyi Zhang, Jun Wang. Light response and adsorption interaction of black phosphorus quantum dots and single-layer graphene phototransistor[J]. Front. Optoelectron., 2023, 16(2): 9-.
[2] Qin Xue, Mingfang Huo, Guohua Xie. Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence[J]. Front. Optoelectron., 2023, 16(1): 2-.
[3] Xiazi HUANG, Yingying ZHOU, Chi Man WOO, Yue PAN, Liming NIE, Puxiang LAI. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review[J]. Front. Optoelectron., 2020, 13(4): 327-351.
[4] Xinglu QIAN, Jun ZOU, Mingming SHI, Bobo YANG, Yang LI, Ziming WANG, Yiming LIU, Zizhuan LIU, Fei ZHENG. Development of optical-thermal coupled model for phosphor-converted LEDs[J]. Front. Optoelectron., 2019, 12(3): 249-267.
[5] Runda GUO, Wenzhi ZHANG, Qing ZHANG, Xialei LV, Lei WANG. Efficient deep red phosphorescent OLEDs using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off[J]. Front. Optoelectron., 2018, 11(4): 375-384.
[6] Run HU, Xiaobing LUO, Huai ZHENG, Sheng LIU. Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package[J]. Front Optoelec, 2012, 5(2): 138-146.
[7] Haibo RAO, Kun DING, Jirong SONG, Likun XIE, Wei WANG, Xianlong WAN, Linsong ZHOU, Junyuan LIAO. Self-adaptive phosphor coating technology for white LED packaging[J]. Front Optoelec, 2012, 5(2): 147-152.
[8] Xing FU, Huai ZHENG, Sheng LIU, Xiaobing LUO. Effects of packaging structure on optical performances of phosphor converted light emitting diodes[J]. Front Optoelec, 2012, 5(2): 153-156.
[9] Juan ZHAO, Junsheng YU, Wen WEN, Yadong JIANG. Properties of non-doped organic light-emitting devices based on an ultrathin iridium complex phosphor layer[J]. Front Optoelec Chin, 2010, 3(4): 413-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed