Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 251-260    https://doi.org/10.1007/s12200-013-0358-2
RESEARCH ARTICLE
Investigation on layover imaging in synthetic aperture ladar
Zhaosheng YANG1, Jin WU2(), Zhilong ZHAO1, Donglei WANG2, Yuanyuan SU1, Na LIANG1
1. University of Chinese Academy of Sciences, Beijing 100039, China; 2. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(1612 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to the short laser wavelength, almost all practical targets are rough. Surface elevations in rough targets will result in layovers in synthetic aperture ladar (SAL). High resolution SAL image with layovers will be different from the target picture taken by incoherent tools as digital camera. To investigate the layovers in SAL image, a simplified mathematical model is built by optics diffraction theory and a laboratory SAL is setup using 1550 nm tunable laser source. Layovers in SAL images, in both theoretical simulation and experimental demonstration, are carefully observed. Detailed results on various targets are illustrated.

Keywords synthetic aperture ladar (SAL)      rough target      layover      simulation      demonstration     
Corresponding Author(s): WU Jin,Email:jwu909@263.net   
Issue Date: 05 September 2013
 Cite this article:   
Zhaosheng YANG,Jin WU,Zhilong ZHAO, et al. Investigation on layover imaging in synthetic aperture ladar[J]. Front Optoelec, 2013, 6(3): 251-260.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0358-2
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/251
Fig.1  Geometry of a sidelooking strip map mode SAL
parametervalue
baseline frequency f0/Hz 1.9355e+ 14
laser wavelength λ0/nm1550
chirp rate k /(Hz?s-1)1.2490e+ 13
pulse length/ms170
T/R aperture Dx×Dy/(μm×μm)300 × 300
target distance L0/m2.4
azimuth step length/μm50
synthetic aperture length/mm8
SAL imaging mode side-look angle ?Stripmapπ4
Tab.1  SAL simulation parameters
Fig.2  SAL image simulation of a small rectangular plate on a big rectangular plate. (a) Target setting; (b) raw SAL data; (c) range compressed image; (d) azimuth focused image; (e) azimuth PHD
Fig.3  SAL image simulation of a four-rectangular-plate target. (a) Target setting; (b) raw SAL data; (c) range compressed image; (d) azimuth focused image; (e) azimuth PHD
Fig.4  SAL image simulation of a rectangular rough target. (a) Target setting; (b) raw SAL data; (c) range compressed image; (d) azimuth focused image; (e) azimuth PHD
parametervalue
laser wavelength/nm1550
target distance/m2.4
wavelength scanning speed /(nm?s-1)100
pulse length/ms100
laser power/mW 5.0
SAL imaging modeStripmap/side-looking
azimuth step length/μm50
synthetic aperture length/mm8
Tab.2  SAL experimental parameters
Fig.5  SAL images of a small rectangular plate on a big rectangular plate. (a) Photograph of the target; (b) raw SAL data; (c) range compressed image; (d) azimuth focused SAL image; (e) black/white (B/W) SAL image; (f) azimuth PHD
Fig.6  SAL images of four rectangular plates. (a) Photograph of the target; (b) raw SAL data; (c) range compressed image; (d) azimuth focused SAL image; (e) azimuth PHD
Fig.7  SAL images of a randomly polished aluminum plate. (a) Photograph of the aluminum foil; (b) raw SAL data; (c) range compressed image; (d) azimuth focused SAL image; (e) azimuth PHD
1 Bashkansky M, Lucke R L, Funk E E, Reintjes J F, Rickard L J. Synthetic aperture imaging at 1.5 μm: laboratory demonstration and potential application to planet surface studies. Proceedings of the Society for Photo-Instrumentation Engineers , 2002, 4849: 48-56
doi: 10.1117/12.460767
2 Bashkansky M, Lucke R L, Funk E, Rickard L J, Reintjes J. Two-dimensional synthetic aperture imaging in the optical domain. Optics Letters , 2002, 27(22): 1983-1985
doi: 10.1364/OL.27.001983 pmid:18033419
3 Beck S M, Buck J R, Buell W F, Dickinson R P, Kozlowski D A, Marechal N J, Wright T J. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing. Applied Optics , 2005, 44(35): 7621-7629
doi: 10.1364/AO.44.007621 pmid:16363787
4 Buck J R, Krause B W, Malm A I R, Ryan C M. Synthetic aperture imaging at optical wavelengths. In: Proceedings of International Quantum Electronics Conference . Optical Society of America, 2009
5 Krause B,Buck J, Ryan C, Hwang D, Kondratko P, Malm A, Gleason A, Ashby S. Synthetic aperture ladar flight demonstration. In: Proceedings of CLEO: Science and Innovations . Optical Society of America, 2011
6 Zhou Y,Xu N, Luan Z, Yan A M, Wang L J, Sun J F, Liu L R. 2D imaging experiment of a 2D target in a laboratory-scale synthetic aperture imaging ladar. Acta Optica Sinica , 2009, 29(7): 2030-2032 (in Chinese)
doi: 10.3788/AOS20092907.2030
7 Liu L R, Zhou Y, Zhi Y N, Sun J F, Wu Y P, Luan Z, Yan A M, Wang L J, Dai E W, Lu W. A large aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space. Acta Optica Sinica , 2011, 31(9): 0900112 (in Chinese)
doi: 10.3788/AOS201131.0900112
8 Dai E W, Sun J F, Yan A M, Zhi Y N, Zhou Y, Wu Y P, Liu L R. Demonstration of a laboratory Fresnel telescope synthetic aperture imaging ladar. Acta Optica Sinica , 2012, 32(5): 0528003 (in Chinese)
doi: 10.3788/aos201232.0528003
9 Buell W F, Marechal N J, Buck J R. Synthetic-aperture imaging ladar. Aerospace Corporation Magazine of Advanced Technology , 2004, 5(2): 45-49
10 Dierking M, Schumm B, Ricklin J C, Tomlinson P G, Fuhrer S D. Synthetic aperture LADAR for tactical imaging overview. In:Proceedings of 14th Coherent Laser Radar Conference (CLRC) , 2007, 191-194
11 Guo L, Xing M D, Zhang L, Tang YBao Z. Research on indoor experimentation of range SAL imaging system. Science in China Series E: Technology Sciences , 2009, 52(10): 3098-3104
doi: 10.1007/s11431-009-0157-6
12 Hong G L, Wang J Y, Meng Z H, Li J W, Tong P, Shu R. Chirped amplitude modulation and range dimension processing of near infrared synthetic aperture ladar. Journal of Infrared and Millimeter Waves , 2009, 28(3): 229-234 (in Chinese)
doi: 10.3724/SP.J.1010.2009.00229
13 Liu L R. Principle of down-looking synthetic aperture imaging ladar. Acta Optica Sinica , 2012, 32(9): 0928002 (in Chinese)
doi: 10.3788/aos201232.0928002
14 Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques. Optics express , 2012, 20(22): 24237-24246
15 Tavassoly M T, Nahal A, Ebadi Z. Image formation in rough surfaces. Optics Communications , 2004, 238(4-6): 252-260
doi: 10.1016/j.optcom.2004.05.005
16 Wu J. Matched filter in synthetic aperture ladar imaging. Acta Optica Sinica , 2010, 30(7): 2123-2129 (in Chinese)
doi: 10.3788/AOS20103007.2123
17 Zhao Z L, Wu J, Li F F, Yang Z S. Calculation and simulation on vibrating targets imaging in stripmap mode synthetic aperture ladar. Acta Optica Sinica , 2012, 32(8): 0828006 (in Chinese)
doi: 10.3788/AOS201232.0828006
[1] Xinglu QIAN, Jun ZOU, Mingming SHI, Bobo YANG, Yang LI, Ziming WANG, Yiming LIU, Zizhuan LIU, Fei ZHENG. Development of optical-thermal coupled model for phosphor-converted LEDs[J]. Front. Optoelectron., 2019, 12(3): 249-267.
[2] Heng ZHAO,Bo LI,Wenjin WANG,Yi HU,Youqin WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser[J]. Front. Optoelectron., 2016, 9(4): 592-598.
[3] Kang YANG, Minming ZHANG, Deming LIU, Lei DENG. Design and evaluation of scheduling algorithms for TDM/WDM PON based on RSOA[J]. Front Optoelec Chin, 2011, 4(2): 217-222.
[4] Shijuan WU, Baojian WU, Kun QIU, Chongzhen LI. Simulation model of magneto-optic fiber Bragg gratings and its applications in Sagnac interferometers[J]. Front Optoelec Chin, 2010, 3(4): 359-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed