Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 437-442    https://doi.org/10.1007/s12200-014-0419-1
RESEARCH ARTICLE
Manipulation of spectral amplitude and phase with plasmonic nano-structures for information storage
Wei Ting CHEN1,2,Pin Chieh WU1,2,Kuang-Yu YANG3,Din Ping TSAI1,2,3,*()
1. Department of Physics, Taiwan University, Taipei 10617, China
2. Graduate Institute of Applied Physics, Taiwan University, Taipei 10617, China
3. Research Center for Applied Sciences, Academia Sinica, Taipei 115, China
 Download: PDF(1972 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical storage devices, such as compact disk (CD) and digital versatile disc (DVD), provide us a platform for cheap and compact information storage media. Nowadays, information we obtain every day keeps increasing, and therefore how to increase the storage capacity becomes an important issue. In this paper, we reported a method for the increase of the capacity of optical storage devices using metallic nano-structures. Metallic nano-structures exhibit strong variations in their reflectance and/or transmittance spectra accompanied with dramatic optical phase modulation due to localized surface plasmon polariton resonances. Two samples were fabricated for the demonstration of storage capacity enhancement through amplitude modulation and phase modulation, respectively. This work is promising for high-density optical storage.

Keywords surface plasmon      data storage      localized surface plasmon resonance      Fano resonance     
Corresponding Author(s): Din Ping TSAI   
Online First Date: 12 June 2014    Issue Date: 12 December 2014
 Cite this article:   
Wei Ting CHEN,Pin Chieh WU,Kuang-Yu YANG, et al. Manipulation of spectral amplitude and phase with plasmonic nano-structures for information storage[J]. Front. Optoelectron., 2014, 7(4): 437-442.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0419-1
https://academic.hep.com.cn/foe/EN/Y2014/V7/I4/437
Fig.1  Amplitude (orange curve) and phase (purple curve) modulation as function of wavelength for an array of 125-nm-long, 60-nm-width and 50-nm-thick gold nano-rods on top of a 50-nm-thick MgF2 on a gold mirror. The period along both x- and y-direction is 250 nm. The plasmonic resonance shows dramatic phase and amplitude modulation at λ ~ 1350 nm
Fig.2  Schematic diagram and SEM images of two samples for information storage through amplitude modulation (a), (b) or phase modulation (c), (d) at plasmonic resonances. (a) Diagram showing the dimensions (in nm) of each nano-feature embedded within a single 500 nm × 500 nm unit-cell; (b) SEM image taken on a small region from the fabricated sample before MgF2 deposition. This array, which contains 10 different nano-patterns with a periodicity of 1.0 μm along both horizontal and vertical axes, was fabricated on glass substrate covered by a 135-nm-thick MgF2 on its top; (c) SEM image of gold nano-rods with 60 nm line width and four different rod lengths L (L = 60, 103, 122 and 250 nm). The size of each pixel is 1.5 μm ×1.5 μm; (d) magnification image of frame (c)
Fig.3  Transmittance spectra of periodic arrays of identical unit cells for x-polarized and y-polarized illumination, each containing different nano-structures. In Figs. 3(a) and 3(b), the black spectrum corresponds to complete unit cells having all ten nano-features, whereas colored spectra represent unit cells with one feature removed; the missing feature is indicated in the legend. Figures 3(c) and 3(d) correspond to the unit cells contain a single nano-feature; the color (matched to the legend) identifies the nano-feature
Fig.4  Information storage through Au nano-rods. The phase information of letter “RCAS” is recorded by Au nano-rods on a gold mirror coupled to a 50-nm-thick dielectric buffer layer MgF2. Figures 4(a) and 4(b) are the calculated reconstructed image “RCAS” and its four levels phase distribution. The experimental reconstructed image “RCAS” under 780-nm diode laser illumination is shown in Fig. 4(c)
1 Satoh I, Ohara S, Akahira N, Takenaga M. Key technology for high density rewritable DVD (DVD-RAM). IEEE Transactions on Magnetics, 1998, 34(2): 337–342
https://doi.org/10.1109/20.667758
2 Chu C H, Shiue C D, Cheng H W, Tseng M L, Chiang H P, Mansuripur M, Tsai D P. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Optics Express, 2010, 18(17): 18383–18393
https://doi.org/10.1364/OE.18.018383 pmid: 20721232
3 Lin S K, Lin I C, Chen S Y, Hsu H W, Tsai D P. Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings. IEEE Transactions on Magnetics, 2007, 43(2): 861–863
https://doi.org/10.1109/TMAG.2006.888471
4 Borg H J, Schijndel M, Rijpers J C N, Lankhorst M H R, Zhou G F, Dekker M J, Ubbens I P D, Kuijper M. Phase-change media for high-numerical-aperture and blue-wavelength recording. Japanese Journal of Applied Physics, 2001, 40(3S): 1592–1597
https://doi.org/10.1143/JJAP.40.1592
5 Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data. Science, 1994, 265(5173): 749–752
https://doi.org/10.1126/science.265.5173.749 pmid: 17736271
6 Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Applied Physics Letters, 1998, 73(15): 2078–2080
https://doi.org/10.1063/1.122383
7 Lin W C, Kao T S, Chang H H, Lin Y H, Fu Y H, Wu C T, Chen K H, Tsai D P. Study of a super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2. Japanese Journal of Applied Physics, 2003, 42(2S): 1029–1030
https://doi.org/10.1143/JJAP.42.1029
8 Tsai D P, Guo W R. Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films, 1997, 15(3): 1442–1445
9 Chiu K P, Lai K F, Tsai D P. Application of surface polariton coupling between nano recording marks to optical data storage. Optics Express, 2008, 16(18): 13885–13892
https://doi.org/10.1364/OE.16.013885 pmid: 18772999
10 Kawata S, Kawata Y. Three-dimensional optical data storage using photochromic materials. Chemical Reviews, 2000, 100(5): 1777–1788
https://doi.org/10.1021/cr980073p pmid: 11777420
11 Day D, Gu M, Smallridge A. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer. Advanced Materials, 2001, 13(12–13): 1005–1007
https://doi.org/10.1002/1521-4095(200107)13:12/13<1005::AID-ADMA1005>3.0.CO;2-7
12 Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459(7245): 410–413
https://doi.org/10.1038/nature08053 pmid: 19458719
13 O’Connor D, Zayats A V. Data storage: the third plasmonic revolution. Nature Nanotechnology, 2010, 5(7): 482–483
https://doi.org/10.1038/nnano.2010.137 pmid: 20606639
14 Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391(6668): 667–669
https://doi.org/10.1038/35570
15 Zakharian A, Mansuripur M, Moloney J. Transmission of light through small elliptical apertures. Optics Express, 2004, 12(12): 2631–2648
https://doi.org/10.1364/OPEX.12.002631 pmid: 19475104
16 Wyrowski F, Bryngdahl O. Iterative Fourier-transform algorithm applied to computer holography. Journal of the Optical Society of America, 1988, 5(7): 1058–1065
https://doi.org/10.1364/JOSAA.5.001058
17 Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Optical Materials Express, 2011, 1(6): 1090–1099
https://doi.org/10.1364/OME.1.001090
18 Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294
https://doi.org/10.1002/adma.201205076 pmid: 23674224
19 Huang J S, Callegari V, Geisler P, Brüning C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150
https://doi.org/10.1038/ncomms1143 pmid: 21267000
20 Fedotov V A, Uchino T, Ou J Y. Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film. Optics Express, 2012, 20(9): 9545–9550
https://doi.org/10.1364/OE.20.009545 pmid: 22535045
21 Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715
https://doi.org/10.1038/nmat2810 pmid: 20733610
22 Wu P C, Chen W T, Yang K Y, Hsiao C T, Sun G, Liu A Q, Zheludev N I, Tsai D P. Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics, 2012, 1(2): 131–138
https://doi.org/10.1515/nanoph-2012-0019
23 Larouche S, Tsai Y J, Tyler T, Jokerst N M, Smith D R. Infrared metamaterial phase holograms. Nature Materials, 2012, 11(5): 450–454
https://doi.org/10.1038/nmat3278 pmid: 22426458
24 Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley E B, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Advanced Materials, 2012, 24(47): 6300–6304
https://doi.org/10.1002/adma.201202540 pmid: 23065927
25 Walther B, Helgert C, Rockstuhl C, Pertsch T. Diffractive optical elements based on plasmonic metamaterials. Applied Physics Letters, 2011, 98(19): 191101-1–191101-3
https://doi.org/10.1063/1.3587622
26 Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 2014, 14(1): 225–230
https://doi.org/10.1021/nl403811d pmid: 24329425
27 Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light. Nature Communications, 2013, 4: 2807
https://doi.org/10.1038/ncomms3807 pmid: 24231944
28 Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K W, Qiu C W, Li J, Zentgraf T, Zhang S. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 2013, 4: 2808
https://doi.org/10.1038/ncomms3808 pmid: 24232073
[1] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[2] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[3] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[4] Yan DENG, Jian OU, Jiangying YU, Min ZHANG, Li ZHANG. Coupled two aluminum nanorod antennas for near-field enhancement[J]. Front. Optoelectron., 2017, 10(2): 138-143.
[5] Yangang BI,Jinhai JI,Yang CHEN,Yushan LIU,Xulin ZHANG,Yunfei LI,Ming XU,Yuefeng LIU,Xiaochi HAN,Qiang GAO,Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices[J]. Front. Optoelectron., 2016, 9(2): 283-289.
[6] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[7] Kun LI,Weiwei QIN,Yan XU,Tianhuan PENG,Di LI. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution[J]. Front. Optoelectron., 2015, 8(4): 379-393.
[8] Hao RUAN. Recent advances in holographic data storage[J]. Front. Optoelectron., 2014, 7(4): 450-466.
[9] Xiaodi TAN,Xiao LIN,An’an WU,Jingliang ZANG. High density collinear holographic data storage system[J]. Front. Optoelectron., 2014, 7(4): 443-449.
[10] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[11] Xiaoliu ZUO, Zhijun SUN. Hybrid surface plasmon modes in metal-clad Si/SiO2 waveguide for compact integration[J]. Front Optoelec, 2013, 6(3): 261-269.
[12] Kaushik BRAHMACHARI, Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
[13] Xue FENG, Fang LIU, Yidong HUANG. Spontaneous emission rate enhancement of nano-structured silicon by surface plasmon polariton[J]. Front Optoelec, 2012, 5(1): 51-62.
[14] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[15] Gongli XIAO, Xiang JI, Linfei GAO, Xingjun WANG, Zhiping ZHOU. Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide[J]. Front Optoelec, 2012, 5(1): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed