|
|
|
Manipulation of spectral amplitude and phase with plasmonic nano-structures for information storage |
Wei Ting CHEN1,2,Pin Chieh WU1,2,Kuang-Yu YANG3,Din Ping TSAI1,2,3,*( ) |
1. Department of Physics, Taiwan University, Taipei 10617, China 2. Graduate Institute of Applied Physics, Taiwan University, Taipei 10617, China 3. Research Center for Applied Sciences, Academia Sinica, Taipei 115, China |
|
|
|
|
Abstract Optical storage devices, such as compact disk (CD) and digital versatile disc (DVD), provide us a platform for cheap and compact information storage media. Nowadays, information we obtain every day keeps increasing, and therefore how to increase the storage capacity becomes an important issue. In this paper, we reported a method for the increase of the capacity of optical storage devices using metallic nano-structures. Metallic nano-structures exhibit strong variations in their reflectance and/or transmittance spectra accompanied with dramatic optical phase modulation due to localized surface plasmon polariton resonances. Two samples were fabricated for the demonstration of storage capacity enhancement through amplitude modulation and phase modulation, respectively. This work is promising for high-density optical storage.
|
| Keywords
surface plasmon
data storage
localized surface plasmon resonance
Fano resonance
|
|
Corresponding Author(s):
Din Ping TSAI
|
|
Online First Date: 12 June 2014
Issue Date: 12 December 2014
|
|
| 1 |
Satoh I, Ohara S, Akahira N, Takenaga M. Key technology for high density rewritable DVD (DVD-RAM). IEEE Transactions on Magnetics, 1998, 34(2): 337–342
https://doi.org/10.1109/20.667758
|
| 2 |
Chu C H, Shiue C D, Cheng H W, Tseng M L, Chiang H P, Mansuripur M, Tsai D P. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Optics Express, 2010, 18(17): 18383–18393
https://doi.org/10.1364/OE.18.018383
pmid: 20721232
|
| 3 |
Lin S K, Lin I C, Chen S Y, Hsu H W, Tsai D P. Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings. IEEE Transactions on Magnetics, 2007, 43(2): 861–863
https://doi.org/10.1109/TMAG.2006.888471
|
| 4 |
Borg H J, Schijndel M, Rijpers J C N, Lankhorst M H R, Zhou G F, Dekker M J, Ubbens I P D, Kuijper M. Phase-change media for high-numerical-aperture and blue-wavelength recording. Japanese Journal of Applied Physics, 2001, 40(3S): 1592–1597
https://doi.org/10.1143/JJAP.40.1592
|
| 5 |
Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data. Science, 1994, 265(5173): 749–752
https://doi.org/10.1126/science.265.5173.749
pmid: 17736271
|
| 6 |
Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Applied Physics Letters, 1998, 73(15): 2078–2080
https://doi.org/10.1063/1.122383
|
| 7 |
Lin W C, Kao T S, Chang H H, Lin Y H, Fu Y H, Wu C T, Chen K H, Tsai D P. Study of a super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2. Japanese Journal of Applied Physics, 2003, 42(2S): 1029–1030
https://doi.org/10.1143/JJAP.42.1029
|
| 8 |
Tsai D P, Guo W R. Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films, 1997, 15(3): 1442–1445
|
| 9 |
Chiu K P, Lai K F, Tsai D P. Application of surface polariton coupling between nano recording marks to optical data storage. Optics Express, 2008, 16(18): 13885–13892
https://doi.org/10.1364/OE.16.013885
pmid: 18772999
|
| 10 |
Kawata S, Kawata Y. Three-dimensional optical data storage using photochromic materials. Chemical Reviews, 2000, 100(5): 1777–1788
https://doi.org/10.1021/cr980073p
pmid: 11777420
|
| 11 |
Day D, Gu M, Smallridge A. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer. Advanced Materials, 2001, 13(12–13): 1005–1007
https://doi.org/10.1002/1521-4095(200107)13:12/13<1005::AID-ADMA1005>3.0.CO;2-7
|
| 12 |
Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459(7245): 410–413
https://doi.org/10.1038/nature08053
pmid: 19458719
|
| 13 |
O’Connor D, Zayats A V. Data storage: the third plasmonic revolution. Nature Nanotechnology, 2010, 5(7): 482–483
https://doi.org/10.1038/nnano.2010.137
pmid: 20606639
|
| 14 |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391(6668): 667–669
https://doi.org/10.1038/35570
|
| 15 |
Zakharian A, Mansuripur M, Moloney J. Transmission of light through small elliptical apertures. Optics Express, 2004, 12(12): 2631–2648
https://doi.org/10.1364/OPEX.12.002631
pmid: 19475104
|
| 16 |
Wyrowski F, Bryngdahl O. Iterative Fourier-transform algorithm applied to computer holography. Journal of the Optical Society of America, 1988, 5(7): 1058–1065
https://doi.org/10.1364/JOSAA.5.001058
|
| 17 |
Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Optical Materials Express, 2011, 1(6): 1090–1099
https://doi.org/10.1364/OME.1.001090
|
| 18 |
Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294
https://doi.org/10.1002/adma.201205076
pmid: 23674224
|
| 19 |
Huang J S, Callegari V, Geisler P, Brüning C, Kern J, Prangsma J C, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1(9): 150
https://doi.org/10.1038/ncomms1143
pmid: 21267000
|
| 20 |
Fedotov V A, Uchino T, Ou J Y. Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film. Optics Express, 2012, 20(9): 9545–9550
https://doi.org/10.1364/OE.20.009545
pmid: 22535045
|
| 21 |
Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715
https://doi.org/10.1038/nmat2810
pmid: 20733610
|
| 22 |
Wu P C, Chen W T, Yang K Y, Hsiao C T, Sun G, Liu A Q, Zheludev N I, Tsai D P. Magnetic plasmon induced transparency in three-dimensional metamolecules. Nanophotonics, 2012, 1(2): 131–138
https://doi.org/10.1515/nanoph-2012-0019
|
| 23 |
Larouche S, Tsai Y J, Tyler T, Jokerst N M, Smith D R. Infrared metamaterial phase holograms. Nature Materials, 2012, 11(5): 450–454
https://doi.org/10.1038/nmat3278
pmid: 22426458
|
| 24 |
Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley E B, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Advanced Materials, 2012, 24(47): 6300–6304
https://doi.org/10.1002/adma.201202540
pmid: 23065927
|
| 25 |
Walther B, Helgert C, Rockstuhl C, Pertsch T. Diffractive optical elements based on plasmonic metamaterials. Applied Physics Letters, 2011, 98(19): 191101-1–191101-3
https://doi.org/10.1063/1.3587622
|
| 26 |
Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 2014, 14(1): 225–230
https://doi.org/10.1021/nl403811d
pmid: 24329425
|
| 27 |
Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light. Nature Communications, 2013, 4: 2807
https://doi.org/10.1038/ncomms3807
pmid: 24231944
|
| 28 |
Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K W, Qiu C W, Li J, Zentgraf T, Zhang S. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 2013, 4: 2808
https://doi.org/10.1038/ncomms3808
pmid: 24232073
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|