Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 406-411    https://doi.org/10.1007/s12200-016-0601-8
RESEARCH ARTICLE
Theoretical analysis for optomechanical all-optical transistor
Mengying HE,Shasha LIAO,Li LIU,Jianji DONG()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose an on-chip all optical transistor driven by optical gradient force. The transistor consists of a single micro-ring resonator, half of which is suspended from the substrate, and a bus waveguide. The free-standing arc is bent by optical gradient force generated when the control light is coupled into the ring. The output power of the probe light is tuned continuously as the transmission spectrum red-shift due to the displacement of the free-standing arc. The transistor shows three working regions known as cutoff region, amplified region and saturate region, and the characteristic curve is tunable by changing the wavelength of the control light. Potential applications of the all optical transistor include waveform regeneration and other optical computing.

Keywords silicon photonics      optical gradient force      optical transistor     
Corresponding Author(s): Jianji DONG   
Just Accepted Date: 19 August 2016   Online First Date: 06 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Mengying HE,Shasha LIAO,Li LIU, et al. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0601-8
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/406
Fig.1  (a) Schematic illustration of an all optical transistor driven by optical gradient force; (b) transmission spectra at a lower control power and red-shift at a higher control power; (c) illustration of the characteristic curve of the optical transistor which includes three parts: cutoff region, amplified region and saturate region
Fig.2  (a) Illustration of the vertical optical gradient force; (b) simulation of the effective refractive index as a function of the air gap; (c) the shift of the resonant wavelength as a function of the displacement; (d) comparison of optical force and mechanical force under different power of the control light; (e) nonlinear relation between the displacement of the arc and the power of the control light; (f) transmission spectra of the ring resonator under different power of the control light
Fig.3  (a) Relation between normalized output power and the input optical power of the control light under different wavelength detuning ?l; (b) nonlinear relation between the displacement of the arc and the input optical power of the control light under different wavelength detuning ?l; (c) illustration of the characteristic curve of the optical transistor while the wavelength detuning ?l= 0.1 nm
Fig.4  (a) Transmission spectra of the ring resonator under different gaps; (b) comparison of optical force and mechanical force under different gaps while the power of the control light is 2 mW and the wavelength detuning ?l is 0.05 nm; (c) relation between normalized output power and the input optical power of the control light under different gaps
1 Sawchuk A A, Strand T C. Digital optical computing. Proceedings of the IEEE, 1984, 72(7): 758–779
https://doi.org/10.1109/PROC.1984.12937
2 Miller D A B. Are optical transistors the logical next step? Nature Photonics, 2010, 4(1): 3–5
https://doi.org/10.1038/nphoton.2009.240
3 Starodumov A N, Barmenkov Y O, Martinez A, Torres I, Zenteno L A. Experimental demonstration of a Raman effect based optical transistor. Optics Letters, 1998, 23(5): 352–354
https://doi.org/10.1364/OL.23.000352 pmid: 18084509
4 Krishnamurthy V, Chen Y, Ho S T. Photonic transistor design principles for switching g<?Pub Caret?>ain>=2. Journal of Lightwave Technology, 2013, 31(13): 2086–2098
https://doi.org/10.1109/JLT.2013.2262134
5 Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Götzinger S, Sandoghdar V. A single-molecule optical transistor. Nature, 2009, 460(7251): 76–80
https://doi.org/10.1038/nature08134 pmid: 19571881
6 Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletić V. All-optical switch and transistor gated by one stored photon. Science, 2013, 341(6147): 768–770
https://doi.org/10.1126/science.1238169 pmid: 23828886
7 Clader B D, Hendrickson S M. Microresonator-based all-optical transistor. Journal of the Optical Society of America B, Optical Physics, 2013, 30(5): 1329–1334
https://doi.org/10.1364/JOSAB.30.001329
8 Povinelli M L, Loncar M, Ibanescu M, Smythe E J, Johnson S G, Capasso F, Joannopoulos J D. Evanescent-wave bonding between optical waveguides. Optics Letters, 2005, 30(22): 3042–3044
https://doi.org/10.1364/OL.30.003042 pmid: 16315715
9 Cai H, Dong B, Tao J F, Ding L, Tsai J M, Lo G Q, Liu A Q, Kwong D L. A nanoelectromechanical systems optical switch driven by optical gradient force. Applied Physics Letters, 2013, 102(2): 023103
https://doi.org/10.1063/1.4775674
10 . Cai H, Lin J X, Wu J H, Dong B, Gu Y D, Yang Z C, Jin Y F, Hao Y L, Kwong D L, Liu A Q. NEMS optical cross connect (OXC) driven by opticl force. In: Proceedings of 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2015
11 Pernice W H, Li M, Tang H X. Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Optics Express, 2009, 17(3): 1806–1816
https://doi.org/10.1364/OE.17.001806 pmid: 19189011
12 Ren M, Huang J, Cai H, Tsai J M, Zhou J, Liu Z, Suo Z, Liu A Q. Nano-optomechanical actuator and pull-back instability. ACS Nano, 2013, 7(2): 1676–1681
https://doi.org/10.1021/nn3056687 pmid: 23351034
13 Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
https://doi.org/10.1109/50.588673
14 Guo X, Zou C L, Ren X F, Sun F W, Guo G C. Broadband opto-mechanical phase shifter for photonic integrated circuits. Applied Physics Letters, 2012, 101(7): 071114
https://doi.org/10.1063/1.4746761
[1] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[2] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[3] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[4] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[5] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[6] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[7] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[8] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed