|
|
|
Quantum prospects for hybrid thin-film lithium niobate on silicon photonics |
Jeremy C. Adcock( ), Yunhong Ding( ) |
| Center for Silicon Photonics for Optical Communication, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark |
|
|
|
|
Abstract Photonics is poised to play a unique role in quantum technology for computation, communications and sensing. Meanwhile, integrated photonic circuits—with their intrinsic phase stability and high-performance, nanoscale components—offer a route to scaling. However, each integrated platform has a unique set of advantages and pitfalls, which can limit their power. So far, the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics. However, thin-film lithium niobate (TFLN) is emerging as a powerful platform with unique capabilities; advances in fabrication have yielded loss metrics competitive with any integrated photonics platform, while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation. In this short review, we explore the prospects of dynamic quantum circuits—such as multiplexed photon sources and entanglement generation—on hybrid TFLN on silicon (TFLN/Si) photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow.
|
| Keywords
Quantum photonics
Quantum information
Quantum communications
Lithium niobate (LN)
Silicon photonics
|
|
Corresponding Author(s):
Jeremy C. Adcock,Yunhong Ding
|
|
Issue Date: 06 May 2022
|
|
| 1 |
J. Preskill,: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
https://doi.org/10.22331/q-2018-08-06-79
|
| 2 |
F. Arute,, K. Arya,, R. Babbush,, D. Bacon,, J.C. Bardin,, R. Barends,, R. Biswas,, S. Boixo,, F.G.S.L. Brandao,, D.A. Buell,, B. Burkett,, Y. Chen,, Z. Chen,, B. Chiaro,, R. Collins,, W. Courtney,, A. Dunsworth,, E. Farhi,, B. Foxen,, A. Fowler,, C. Gidney,, M. Giustina,, R. Graff,, K. Guerin,, S. Habegger,, M.P. Harrigan,, M.J. Hartmann,, A. Ho,, M. Hoffmann,, T. Huang,, T.S. Humble,, S.V. Isakov,, E. Jeffrey,, Z. Jiang,, D. Kafri,, K. Kechedzhi,, J. Kelly,, P.V. Klimov,, S. Knysh,, A. Korotkov,, F. Kostritsa,, D. Landhuis,, M. Lindmark,, E. Lucero,, D. Lyakh,, S. Mandrà,, J.R. McClean,, M. McEwen,, A. Megrant,, X. Mi,, K. Michielsen,, M. Mohseni,, J. Mutus,, O. Naaman,, M. Neeley,, C. Neill,, M.Y. Niu,, E. Ostby,, A. Petukhov,, J.C. Platt,, C. Quintana,, E.G. Rieffel,, P. Roushan,, N.C. Rubin,, D. Sank,, K.J. Satzinger,, V. Smelyanskiy,, K.J. Sung,, M.D. Trevithick,, A. Vainsencher,, B. Villalonga,, T. White,, Z.J. Yao,, P. Yeh,, A. Zalcman,, H. Neven,, J.M. Martinis,: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
https://doi.org/10.1038/s41586-019-1666-5
|
| 3 |
H.S. Zhong,, Y.H. Deng,, J. Qin,, H. Wang,, M.C. Chen,, L.C. Peng,, Y.H. Luo,, D. Wu,, S.Q. Gong,, H. Su,, Y. Hu,: Phase-programmable gaussian boson sampling using stimulated squeezed light. arxiv preprint arxiv: 2106. 15534 (2021)
https://doi.org/10.1103/PhysRevLett.127.180502
|
| 4 |
Y.L. Wu,, W.S. Bao,, S.R. Cao,, F.S. Chen,, M.C. Chen,, X.W. Chen,, T.S. Chung,, H. Deng,, Y.J. Du,, D.J. Fan,, M. Gong,, C. Guo,, C. Guo,, S.J. Guo,, L.C. Han,, L.Y. Hong,, H.L. Huang,, Y.H. Huo,, L.P. Li,, N. Li,, S.W. Li,, Y. Li,, F.T. Liang,, C. Lin,, J. Lin,, H.R. Qian,, D. Qiao,, H. Rong,, H. Su,, L.H. Sun,, L.Y. Wang,, S.Y. Wang,, D.C. Wu,, Y. Xu,, K. Yan,, W.F. Yang,, Y. Yang,, Y.S. Ye,, J.H. Yin,, C. Ying,, J.L. Yu,, C. Zha,, C. Zhang,, H.B. Zhang,, K.L. Zhang,, Y.M. Zhang,, H. Zhao,, Y.W. Zhao,, L. Zhou,, Q.L. Zhu,, C.Y. Lu,, C.Z. Peng,, X.B. Zhu,, J.W. Pan,: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127(18), 180501 (2021)
https://doi.org/10.1103/PhysRevLett.127.180501
|
| 5 |
S.K. Liao,, W.Q. Cai,, W.Y. Liu,, L. Zhang,, Y. Li,, J.G. Ren,, J. Yin,, Q. Shen,, Y. Cao,, Z.P. Li,, F.Z. Li,, X.W. Chen,, L.H. Sun,, J.J. Jia,, J.C. Wu,, X.J. Jiang,, J.F. Wang,, Y.M. Huang,, Q. Wang,, Y.L. Zhou,, L. Deng,, T. Xi,, L. Ma,, T. Hu,, Q. Zhang,, Y.A. Chen,, N.L. Liu,, X.B. Wang,, Z.C. Zhu,, C.Y. Lu,, R. Shu,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
https://doi.org/10.1038/nature23655
|
| 6 |
J.G. Ren,, P. Xu,, H.L. Yong,, L. Zhang,, S.K. Liao,, J. Yin,, W.Y. Liu,, W.Q. Cai,, M. Yang,, L. Li,, K.X. Yang,, X. Han,, Y.Q. Yao,, J. Li,, H.Y. Wu,, S. Wan,, L. Liu,, D.Q. Liu,, Y.W. Kuang,, Z.P. He,, P. Shang,, C. Guo,, R.H. Zheng,, K. Tian,, Z.C. Zhu,, N.L. Liu,, C.Y. Lu,, R. Shu,, Y.A. Chen,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)
https://doi.org/10.1038/nature23675
|
| 7 |
M. Giustina,, M.A.M. Versteegh,, S. Wengerowsky,, J. Handsteiner,, A. Hochrainer,, K. Phelan,, F. Steinlechner,, J. Kofler,, J. Larsson,, C. Abellán,, W. Amaya,, V. Pruneri,, M.W. Mitchell,, J. Beyer,, T. Gerrits,, A.E. Lita,, L.K. Shalm,, S.W. Nam,, T. Scheidl,, R. Ursin,, B. Wittmann,, A. Zeilinger,: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115(25), 250401 (2015)
https://doi.org/10.1103/PhysRevLett.115.250401
|
| 8 |
B. Hensen,, H. Bernien,, A.E. Dréau,, A. Reiserer,, N. Kalb,, M.S. Blok,, J. Ruitenberg,, R.F. Vermeulen,, R.N. Schouten,, C. Abellán,, W. Amaya,, V. Pruneri,, M.W. Mitchell,, M. Markham,, D.J. Twitchen,, D. Elkouss,, S. Wehner,, T.H. Taminiau,, R. Hanson,: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015)
https://doi.org/10.1038/nature15759
|
| 9 |
L.K. Shalm,, E. Meyer-Scott,, B.G. Christensen,, P. Bierhorst,, M.A. Wayne,, M.J. Stevens,, T. Gerrits,, S. Glancy,, D.R. Hamel,, M.S. Allman,, K.J. Coakley,, S.D. Dyer,, C. Hodge,, A.E. Lita,, V.B. Verma,, C. Lambrocco,, E. Tortorici,, A.L. Migdall,, Y. Zhang,, D.R. Kumor,, W.H. Farr,, F. Marsili,, M.D. Shaw,, J.A. Stern,, C. Abellán,, W. Amaya,, V. Pruneri,, T. Jennewein,, M.W. Mitchell,, P.G. Kwiat,, J.C. Bienfang,, R.P. Mirin,, E. Knill,, S.W. Nam,: Strong loophole-free test of local realism. Phys. Rev. Lett. 115(25), 250402 (2015)
https://doi.org/10.1103/PhysRevLett.115.250402
|
| 10 |
T.R. Bromley,, J.M. Arrazola,, S. Jahangiri,, J. Izaac,, N. Quesada,, A.D. Gran,, M. Schuld,, J. Swinarton,, Z. Zabaneh,, N. Killoran,: Applications of near-term photonic quantum computers: software and algorithms. Quan. Sci. Technol. 5(3), 034010 (2020)
https://doi.org/10.1088/2058-9565/ab8504
|
| 11 |
J. Wang,, F. Sciarrino,, A. Laing,, M.G. Thompson,: Integrated photonic quantum technologies. Nat. Photon. 14(5), 273–284 (2020)
https://doi.org/10.1038/s41566-019-0532-1
|
| 12 |
J.W. Silverstone,, J. Wang,, D. Bonneau,, P. Sibson,, R. Santagati,, C. Erven,, J.L. O'Brien,, M.G. Thompson,: Silicon quantum photonics. In: Proceedings of International Conference on Optical MEMS and Nanophotonics (OMN). Singapore: IEEE (2016)
https://doi.org/10.1109/OMN.2016.7565856
|
| 13 |
J.C. Adcock,, J. Bao,, Y. Chi,, X. Chen,, D. Bacco,, Q. Gong,, L.K. Oxenlowe,, J. Wang,, Y. Ding,: Advances in silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–24 (2021)
https://doi.org/10.1109/JSTQE.2020.3025737
|
| 14 |
P. Sibson,, J.E. Kennard,, S. Stanisic,, C. Erven,, J.L. O’Brien,, M.G. Thompson,: Integrated silicon photonics for high-speed quantum key distribution. Optica 4(2), 172–177 (2017)
https://doi.org/10.1364/OPTICA.4.000172
|
| 15 |
D. Llewellyn,, Y. Ding,, I.I. Faruque,, S. Paesani,, D. Bacco,, R. Santagati,, Y.J. Qian,, Y. Li,, Y.F. Xiao,, M. Huber,, M. Malik,, G.F. Sinclair,, X. Zhou,, K. Rottwitt,, J.L. O’Brien,, J.G. Rarity,, Q. Gong,, L.K. Oxenlowe,, J. Wang,, M.G. Thompson,: Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16(2), 148–153 (2020)
https://doi.org/10.1038/s41567-019-0727-x
|
| 16 |
C. Vigliar,, S. Paesani,, Y.H. Ding,, J.C. Adcock,, J.W. Wang,, S. Morley-Short,, D. Bacco,, L.K. Oxenløwe,, M.G. Thompson,, J.G. Rarity,, A. Laing,: Error protected qubits in a silicon photonic chip. Nat. Phys. 17(10), 1137–1143 (2020)
https://doi.org/10.1038/s41567-021-01333-w
|
| 17 |
S. Paesani,, Y. Ding,, R. Santagati,, L. Chakhmakhchyan,, C. Vigliar,, K. Rottwitt,, L.K. Oxenløwe,, J. Wang,, M.G. Thompson,, A. Laing,: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15(9), 925–929 (2019)
https://doi.org/10.1038/s41567-019-0567-8
|
| 18 |
T. Ono,, G.F. Sinclair,, D. Bonneau,, M.G. Thompson,, J.C.F. Matthews,, J.G. Rarity,: Observation of nonlinear interference on a silicon photonic chip. Opt. Lett. 44(5), 1277–1280 (2019)
https://doi.org/10.1364/OL.44.001277
|
| 19 |
T. Rudolph,: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017)
https://doi.org/10.1063/1.4976737
|
| 20 |
M. Levy,, R.M. Osgood,, R. Liu,, L.E. Cross,, A. Cargill, G.S.I.I.I., Kumar,, H. Bakhru,: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73(16), 2293– 2295 (1998)
https://doi.org/10.1063/1.121801
|
| 21 |
P. Rabiei,, J. Ma,, S. Khan,, J. Chiles,, S. Fathpour,: Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 21(21), 25573–25581 (2013)
https://doi.org/10.1364/OE.21.025573
|
| 22 |
G. Poberaj,, H. Hu,, W. Sohler,, P. Günter,: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)
https://doi.org/10.1002/lpor.201100035
|
| 23 |
M. Bazzan,, C. Sada,: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2(4), 040603 (2015)
https://doi.org/10.1063/1.4931601
|
| 24 |
P.O. Weigel,, J. Zhao,, K. Fang,, H. Al-Rubaye,, D. Trotter,, D. Hood,, J. Mudrick,, C. Dallo,, A.T. Pomerene,, A.L. Starbuck,, C.T. DeRose,, A.L. Lentine,, G. Rebeiz,, S. Mookherjea,: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26(18), 23728–23739 (2018)
https://doi.org/10.1364/OE.26.023728
|
| 25 |
Y. Sakashita,, H. Segawa,: Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys. 77(11), 5995–5999 (1995)
https://doi.org/10.1063/1.359183
|
| 26 |
Y. Nakata,, S. Gunji,, T. Okada,, M. Maeda,: Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Appl. Phys. A 79(4–6), 1279–1282 (2004)
https://doi.org/10.1007/s00339-004-2748-1
|
| 27 |
F. Gitmans,, Z. Sitar,, P. Günter,: Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy. Vacuum 46(8–10), 939–942 (1995)
https://doi.org/10.1016/0042-207X(95)00077-1
|
| 28 |
X. Lansiaux,, E. Dogheche,, D. Remiens,, M. Guilloux-viry,, A. Perrin,, P. Ruterana,: LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J. Appl. Phys. 90(10), 5274–5277 (2001)
https://doi.org/10.1063/1.1378332
|
| 29 |
M. Bruel,: Silicon on insulator material technology. Electron. Lett. 31(14), 1201–1202 (1995)
https://doi.org/10.1049/el:19950805
|
| 30 |
A.J. Mercante,, P. Yao,, S. Shi,, G. Schneider,, J. Murakowski,, D.W. Prather,: 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24(14), 15590–15595 (2016)
https://doi.org/10.1364/OE.24.015590
|
| 31 |
C. Wang,, M. Zhang,, X. Chen,, M. Bertrand,, A. Shams-Ansari,, S. Chandrasekhar,, P. Winzer,, M. Lončar,: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)
https://doi.org/10.1038/s41586-018-0551-y
|
| 32 |
C. Wang,, M. Zhang,, B. Stern,, M. Lipson,, M. Lončar,: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)
https://doi.org/10.1364/OE.26.001547
|
| 33 |
M. He,, M. Xu,, Y. Ren,, J. Jian,, Z. Ruan,, Y. Xu,, S. Gao,, S. Sun,, X. Wen,, L. Zhou,, L. Liu,, C. Guo,, H. Chen,, S. Yu,, L. Liu,, X. Cai,: High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13(5), 359–364 (2019)
https://doi.org/10.1038/s41566-019-0378-6
|
| 34 |
M. Zhang,, C. Wang,, R. Cheng,, A. Shams-Ansari,, M. Lončar,: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)
https://doi.org/10.1364/OPTICA.4.001536
|
| 35 |
M. Zhang,, C. Wang,, Y. Hu,, A. Shams-Ansari,, T. Ren,, S. Fan,, M. Lončar,: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)
https://doi.org/10.1038/s41566-018-0317-y
|
| 36 |
C. Wang,, M. Zhang,, M. Yu,, R. Zhu,, H. Hu,, M. Loncar,: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)
https://doi.org/10.1038/s41467-019-08969-6
|
| 37 |
M. Xu,, M. He,, H. Zhang,, J. Jian,, Y. Pan,, X. Liu,, L. Chen,, X. Meng,, H. Chen,, Z. Li,, X. Xiao,, S. Yu,, S. Yu,, X. Cai,: High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11(1), 3911 (2020)
https://doi.org/10.1038/s41467-020-17806-0
|
| 38 |
D. Pohl,, M. Reig Escalé, M., Madi,, F. Kaufmann,, P. Brotzer,, A. Sergeyev,, B. Guldimann,, P. Giaccari,, E. Alberti,, U. Meier,, R. Grange,: An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics 14(1), 24–29 (2020)
https://doi.org/10.1038/s41566-019-0529-9
|
| 39 |
D. Sun,, Y. Zhang,, D. Wang,, W. Song,, X. Liu,, J. Pang,, D. Geng,, Y. Sang,, H. Liu,: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)
https://doi.org/10.1038/s41377-020-00434-0
|
| 40 |
H. Li,, B. Ma,: Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13(1), 35–49 (2020)
https://doi.org/10.1007/s12200-019-0946-x
|
| 41 |
F. Chen,: Laser-written three dimensional nonlinear photonic crystals. Front. Optoelectron. 12(4), 342–343 (2019)
https://doi.org/10.1007/s12200-019-0982-6
|
| 42 |
J. Lu,, J.B. Surya,, X. Liu,, A.W. Bruch,, Z. Gong,, Y. Xu,, H.X. Tang,: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)
https://doi.org/10.1364/OPTICA.6.001455
|
| 43 |
X. Liu,, P. Ying,, X. Zhong,, J. Xu,, Y. Han,, S. Yu,, X. Cai,: Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett. 45(22), 6318–6321 (2020)
https://doi.org/10.1364/OL.410192
|
| 44 |
D. Thomson,, A. Zilkie,, J.E. Bowers,, T. Komljenovic,, G.T. Reed,, L. Vivien,, D. Marris-Morini,, E. Cassan,, L. Virot,, J.M. Fédéli,, J.M. Hartmann,, J.H. Schmid,, D.X. Xu,, F. Boeuf,, P. O’Brien,, G.Z. Mashanovich,, M. Nedeljkovic,: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)
https://doi.org/10.1088/2040-8978/18/7/073003
|
| 45 |
G.V. Treyz,, P.G. May,, J.M. Halbout,: Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect. Appl. Phys. Lett. 59(7), 771–773 (1991)
https://doi.org/10.1063/1.105338
|
| 46 |
A. Liu,, L. Liao,, D. Rubin,, H. Nguyen,, B. Ciftcioglu,, Y. Chetrit,, N. Izhaky,, M. Paniccia,: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660–668 (2007)
https://doi.org/10.1364/OE.15.000660
|
| 47 |
Y. Ding,, C. Peucheret,, H. Ou,, K. Yvind,: Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 39(18), 5348–5350 (2014)
https://doi.org/10.1364/OL.39.005348
|
| 48 |
J. Notaros,, F. Pavanello,, M. T. Wade,, C. M. Gentry,, A. Atabaki,, L. Alloatti,, R. J. Ram,, A. P. Miloš, Ultra-efficient CMOS fiber-to-chip grating couplers. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC). Anaheim: IEEE (2016)
https://doi.org/10.1364/OFC.2016.M2I.5
|
| 49 |
N. Hoppe,, W.S. Zaoui,, L. Rathgeber,, Y. Wang,, R.H. Klenk,, W. Vogel,, M. Kaschel,, S.L. Portalupi,, J. Burghartz,, M. Berroth,: Ultra-efficient silicon-on-insulator grating couplers with backside metal mirrors. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–6 (2020)
https://doi.org/10.1109/JSTQE.2019.2935296
|
| 50 |
T. Horikawa,, D. Shimura,, T. Mogami,: Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6(1), 9–15 (2016)
https://doi.org/10.1557/mrc.2015.84
|
| 51 |
A. Biberman,, M.J. Shaw,, E. Timurdogan,, J.B. Wright,, M.R. Watts,: Ultralow-loss silicon ring resonators. Opt. Lett. 37(20), 4236–4238 (2012)
https://doi.org/10.1364/OL.37.004236
|
| 52 |
Y. Liu,, C. Wu,, X. Gu,, Y. Kong,, X. Yu,, R. Ge,, X. Cai,, X. Qiang,, J. Wu,, X. Yang,, P. Xu,: High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring. Opt. Lett. 45(1), 73–76 (2020)
https://doi.org/10.1364/OL.45.000073
|
| 53 |
S. Paesani,, M. Borghi,, S. Signorini,, A. Maïnos,, L. Pavesi,, A. Laing,: Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11(1), 2505 (2020)
https://doi.org/10.1038/s41467-020-16187-8
|
| 54 |
J.B. Christensen,, J.G. Koefoed,, K. Rottwitt,, C. McKinstrie,: Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation. arxiv preprint arxiv: 1711. 02401 (2017)
https://doi.org/10.1364/CLEO_QELS.2018.FTh1G.1
|
| 55 |
Z. Vernon,, M. Menotti,, C.C. Tison,, J.A. Steidle,, M.L. Fanto,, P.M. Thomas,, S.F. Preble,, A.M. Smith,, P.M. Alsing,, M. Liscidini,, J.E. Sipe,: Truly unentangled photon pairs without spectral filtering. Opt. Lett. 42(18), 3638–3641 (2017)
https://doi.org/10.1364/OL.42.003638
|
| 56 |
H. Zhu,, Q. Li,, H. Han,, Z. Li,, X. Zhang,, H. Zhang,, H. Hu,: Hybrid mono-crystalline silicon and lithium niobate thin films. Chin. Opt. Lett. 19, 060017 (2021)
https://doi.org/10.3788/COL202119.060017
|
| 57 |
P.O. Weigel,, M. Savanier,, C.T. DeRose,, A.T. Pomerene,, A.L. Starbuck,, A.L. Lentine,, V. Stenger,, S. Mookherjea,: Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 6(1), 22301 (2016)
https://doi.org/10.1038/srep22301
|
| 58 |
I. Krasnokutska,, R.J. Chapman,, J.J. Tambasco,, A. Peruzzo,: High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 27(13), 17681–17685 (2019)
https://doi.org/10.1364/OE.27.017681
|
| 59 |
B. Chen,, Z. Ruan,, J. Hu,, J. Wang,, C. Lu,, A.P.T. Lau,, C. Guo,, K. Chen,, P. Chen,, L. Liu,: Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Opt. Express 29(2), 1289–1295 (2021)
https://doi.org/10.1364/OE.413820
|
| 60 |
Z. Ruan,, J. Hu,, Y. Xue,, J. Liu,, B. Chen,, J. Wang,, K. Chen,, P. Chen,, L. Liu,: Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express 28(24), 35615–35621 (2020)
https://doi.org/10.1364/OE.411284
|
| 61 |
J. E. Bowers,, A. Y. Liu, A comparison of four approaches to photonic integration. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: IEEE (2017)
https://doi.org/10.1364/OFC.2017.M2B.4
|
| 62 |
Y. Ogiso,, J. Ozaki,, Y. Ueda,, N. Kashio,, N. Kikuchi,, E. Yamada,, H. Tanobe,, S. Kanazawa,, H. Yamazaki,, Y. Ohiso,, T. Fujii,, M. Kohtoku,: Over 67 GHz bandwidth and 15 V Vπ InP-based optical IQ modulator with nipn heterostructure. J. Lightwave Technol. 35(8), 1450–1455 (2017)
https://doi.org/10.1109/JLT.2016.2639542
|
| 63 |
L. Ottaviano,, M. Pu,, E. Semenova,, K. Yvind,: Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator. Opt. Lett. 41(17), 3996–3999 (2016)
https://doi.org/10.1364/OL.41.003996
|
| 64 |
M. Burla,, C. Hoessbacher,, W. Heni,, C. Haffner,, Y. Fedoryshyn,, D. Werner,, T. Watanabe,, H. Massler,, D. Elder,, L. Dalton,, J. Leuthold,: 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photon. 4(5), 056106 (2019)
https://doi.org/10.1063/1.5086868
|
| 65 |
C. Zhong,, J. Li,, H. Lin,: Graphene-based all-optical modulators. Front. Optoelectron. 13(2), 114–128 (2020)
https://doi.org/10.1007/s12200-020-1020-4
|
| 66 |
E. Knill,, R. Laflamme,, G.J. Milburn,: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)
https://doi.org/10.1038/35051009
|
| 67 |
S. Bartolucci,, P. Birchall,, H. Bombin,, H. Cable,, C. Dawson,, M. Gimeno-Segovia,, E. Johnston,, K. Kieling,, N. Nickerson,, M. Pant,, F. Pastawski,, T. Rudolph,, C. Sparrow,: Fusion-based quantum computation. arxiv preprint arxiv: 2101. 09310 (2021)
|
| 68 |
S. Takeda,, A. Furusawa,: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photon. 4(6), 060902 (2019)
https://doi.org/10.1063/1.5100160
|
| 69 |
J.E. Bourassa,, R.N. Alexander,, M. Vasmer,, A. Patil,, I. Tzitrin,, T. Matsuura,, D. Su,, B.Q. Baragiola,, S. Guha,, G. Dauphinais,, K.K. Sabapathy,, N.C. Menicucci,, I. Dhand,: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021)
https://doi.org/10.22331/q-2021-02-04-392
|
| 70 |
K. Azuma,, K. Tamaki,, H.K. Lo,: All-photonic quantum repeaters. Nat. Commun. 6(1), 6787 (2015)
https://doi.org/10.1038/ncomms7787
|
| 71 |
J.C. Adcock,, S. Morley-Short,, J.W. Silverstone,, M.G. Thompson,: Hard limits on the postselectability of optical graph states. Quan. Sci. Technol. 4, 015010 (2018)
https://doi.org/10.1088/2058-9565/aae950
|
| 72 |
A.L. Migdall,, D. Branning,, S. Castelletto,: Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66(5), 053805 (2002)
https://doi.org/10.1103/PhysRevA.66.053805
|
| 73 |
T.B. Pittman,, B.C. Jacobs,, P. Franson,: Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66(4), 042303 (2002)
https://doi.org/10.1103/PhysRevA.66.042303
|
| 74 |
D. Bonneau,, G.J. Mendoza,, J.L. O’Brien,, M.G. Thompson,: Effect of loss on multiplexed single-photon sources. New J. Phys. 17(4), 043057 (2015)
https://doi.org/10.1088/1367-2630/17/4/043057
|
| 75 |
K. Fumihiro,, P. Kwiat,: High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5(10), eaaw8586 (2019)
https://doi.org/10.1126/sciadv.aaw8586
|
| 76 |
M.J. Collins,, C. Xiong,, I.H. Rey,, T.D. Vo,, J. He,, S. Shahnia,, C. Reardon,, T.F. Krauss,, M.J. Steel,, A.S. Clark,, B.J. Eggleton,: Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4(1), 2582 (2013)
https://doi.org/10.1038/ncomms3582
|
| 77 |
C. Joshi,, A. Farsi,, S. Clemmen,, S. Ramelow,, A.L. Gaeta,: Frequency multiplexing for quasi-deterministic heralded singlephoton sources. Nat. Commun. 9(1), 847 (2018)
https://doi.org/10.1038/s41467-018-03254-4
|
| 78 |
S. Thomas,, M. Billard,, N. Coste,, S. Wein,, P. Ollivier,, O. Krebs,, L. Tazaïrt,, A. Harouri,, A. Lemaitre,, I. Sagnes,, C. Anton,, L. Lanco,, N. Somaschi,, J. Loredo,, P. Senellart,: Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126(23), 233601 (2021)
https://doi.org/10.1103/PhysRevLett.126.233601
|
| 79 |
N. Tomm,, A. Javadi,, N.O. Antoniadis,, D. Najer,, M.C. Löbl,, A.R. Korsch,, R. Schott,, S.R. Valentin,, A.D. Wieck,, A. Ludwig,, R.J. Warburton,: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16(4), 399–403 (2021)
https://doi.org/10.1038/s41565-020-00831-x
|
| 80 |
S. Bartolucci,, P. Birchall,, M. Gimeno-Segovia,, E. Johnston,, K. Kieling,, M. Mihir Pant,, T. Rudolph,, J. Smith,, C. Sparrow,, M. Vidrighin,: Creation of entangled photonic states using linear optics. arxiv preprint arxiv: 2106. 13825 (2021)
|
| 81 |
S. Paesani,, J. Bulmer,, A. Jones,, R. Santagati,, A. Laing,: Scheme for universal high-dimensional quantum computation with linear optics. Phys. Rev. Lett. 126(23), 230504 (2021)
https://doi.org/10.1103/PhysRevLett.126.230504
|
| 82 |
X. Zhang,, B. Bell,, M. Pelusi,, J. He,, W. Geng,, Y. Kong,, P. Zhang,, C. Xiong,, B.J. Eggleton,: High repetition rate correlated photon pair generation in integrated silicon nanowires. Appl. Opt. 56(30), 8420–8424 (2017)
https://doi.org/10.1364/AO.56.008420
|
| 83 |
J. Münzberg,, A. Vetter,, F. Beutel,, W. Hartmann,, S. Ferrari,, W.H.P. Pernice,, C. Rockstuhl,: Superconducting nanowire single- photon detector implemented in a 2D photonic crystal cavity. Optica 5(5), 658–665 (2018)
https://doi.org/10.1364/OPTICA.5.000658
|
| 84 |
J F Tasker, J Frazer, G Ferranti, F Allen, L Brunel, S Tanzilli, V D’Auria, J. Matthews 9~GHz measurement of squeezed light by interfacing silicon photonics and integrated electronics. arxiv preprint arxiv: 2009. 14318 (2020)
|
| 85 |
F. Eltes,, G.E. Villarreal-Garcia,, D. Caimi,, H. Siegwart,, A.A. Gentile,, A. Hart,, P. Stark,, G.D. Marshall,, M.G. Thompson,, J. Barreto,, J. Fompeyrine,, S. Abel,: An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19(11), 1164–1168 (2020)
https://doi.org/10.1038/s41563-020-0725-5
|
| 86 |
Y. Li,, T. Lan,, J. Li,, Z. Wang,: High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl. Opt. 59(22), 6694–6701 (2020)
https://doi.org/10.1364/AO.395897
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|