Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (1) : 7    https://doi.org/10.1007/s12200-022-00006-7
MINI REVIEW
Quantum prospects for hybrid thin-film lithium niobate on silicon photonics
Jeremy C. Adcock(), Yunhong Ding()
Center for Silicon Photonics for Optical Communication, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
 Download: PDF(719 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photonics is poised to play a unique role in quantum technology for computation, communications and sensing. Meanwhile, integrated photonic circuits—with their intrinsic phase stability and high-performance, nanoscale components—offer a route to scaling. However, each integrated platform has a unique set of advantages and pitfalls, which can limit their power. So far, the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics. However, thin-film lithium niobate (TFLN) is emerging as a powerful platform with unique capabilities; advances in fabrication have yielded loss metrics competitive with any integrated photonics platform, while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation. In this short review, we explore the prospects of dynamic quantum circuits—such as multiplexed photon sources and entanglement generation—on hybrid TFLN on silicon (TFLN/Si) photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow.

Keywords Quantum photonics      Quantum information      Quantum communications      Lithium niobate (LN)      Silicon photonics     
Corresponding Author(s): Jeremy C. Adcock,Yunhong Ding   
Issue Date: 06 May 2022
 Cite this article:   
Jeremy C. Adcock,Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00006-7
https://academic.hep.com.cn/foe/EN/Y2022/V15/I1/7
1 J. Preskill,: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
https://doi.org/10.22331/q-2018-08-06-79
2 F. Arute,, K. Arya,, R. Babbush,, D. Bacon,, J.C. Bardin,, R. Barends,, R. Biswas,, S. Boixo,, F.G.S.L. Brandao,, D.A. Buell,, B. Burkett,, Y. Chen,, Z. Chen,, B. Chiaro,, R. Collins,, W. Courtney,, A. Dunsworth,, E. Farhi,, B. Foxen,, A. Fowler,, C. Gidney,, M. Giustina,, R. Graff,, K. Guerin,, S. Habegger,, M.P. Harrigan,, M.J. Hartmann,, A. Ho,, M. Hoffmann,, T. Huang,, T.S. Humble,, S.V. Isakov,, E. Jeffrey,, Z. Jiang,, D. Kafri,, K. Kechedzhi,, J. Kelly,, P.V. Klimov,, S. Knysh,, A. Korotkov,, F. Kostritsa,, D. Landhuis,, M. Lindmark,, E. Lucero,, D. Lyakh,, S. Mandrà,, J.R. McClean,, M. McEwen,, A. Megrant,, X. Mi,, K. Michielsen,, M. Mohseni,, J. Mutus,, O. Naaman,, M. Neeley,, C. Neill,, M.Y. Niu,, E. Ostby,, A. Petukhov,, J.C. Platt,, C. Quintana,, E.G. Rieffel,, P. Roushan,, N.C. Rubin,, D. Sank,, K.J. Satzinger,, V. Smelyanskiy,, K.J. Sung,, M.D. Trevithick,, A. Vainsencher,, B. Villalonga,, T. White,, Z.J. Yao,, P. Yeh,, A. Zalcman,, H. Neven,, J.M. Martinis,: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)
https://doi.org/10.1038/s41586-019-1666-5
3 H.S. Zhong,, Y.H. Deng,, J. Qin,, H. Wang,, M.C. Chen,, L.C. Peng,, Y.H. Luo,, D. Wu,, S.Q. Gong,, H. Su,, Y. Hu,: Phase-programmable gaussian boson sampling using stimulated squeezed light. arxiv preprint arxiv: 2106. 15534 (2021)
https://doi.org/10.1103/PhysRevLett.127.180502
4 Y.L. Wu,, W.S. Bao,, S.R. Cao,, F.S. Chen,, M.C. Chen,, X.W. Chen,, T.S. Chung,, H. Deng,, Y.J. Du,, D.J. Fan,, M. Gong,, C. Guo,, C. Guo,, S.J. Guo,, L.C. Han,, L.Y. Hong,, H.L. Huang,, Y.H. Huo,, L.P. Li,, N. Li,, S.W. Li,, Y. Li,, F.T. Liang,, C. Lin,, J. Lin,, H.R. Qian,, D. Qiao,, H. Rong,, H. Su,, L.H. Sun,, L.Y. Wang,, S.Y. Wang,, D.C. Wu,, Y. Xu,, K. Yan,, W.F. Yang,, Y. Yang,, Y.S. Ye,, J.H. Yin,, C. Ying,, J.L. Yu,, C. Zha,, C. Zhang,, H.B. Zhang,, K.L. Zhang,, Y.M. Zhang,, H. Zhao,, Y.W. Zhao,, L. Zhou,, Q.L. Zhu,, C.Y. Lu,, C.Z. Peng,, X.B. Zhu,, J.W. Pan,: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127(18), 180501 (2021)
https://doi.org/10.1103/PhysRevLett.127.180501
5 S.K. Liao,, W.Q. Cai,, W.Y. Liu,, L. Zhang,, Y. Li,, J.G. Ren,, J. Yin,, Q. Shen,, Y. Cao,, Z.P. Li,, F.Z. Li,, X.W. Chen,, L.H. Sun,, J.J. Jia,, J.C. Wu,, X.J. Jiang,, J.F. Wang,, Y.M. Huang,, Q. Wang,, Y.L. Zhou,, L. Deng,, T. Xi,, L. Ma,, T. Hu,, Q. Zhang,, Y.A. Chen,, N.L. Liu,, X.B. Wang,, Z.C. Zhu,, C.Y. Lu,, R. Shu,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
https://doi.org/10.1038/nature23655
6 J.G. Ren,, P. Xu,, H.L. Yong,, L. Zhang,, S.K. Liao,, J. Yin,, W.Y. Liu,, W.Q. Cai,, M. Yang,, L. Li,, K.X. Yang,, X. Han,, Y.Q. Yao,, J. Li,, H.Y. Wu,, S. Wan,, L. Liu,, D.Q. Liu,, Y.W. Kuang,, Z.P. He,, P. Shang,, C. Guo,, R.H. Zheng,, K. Tian,, Z.C. Zhu,, N.L. Liu,, C.Y. Lu,, R. Shu,, Y.A. Chen,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)
https://doi.org/10.1038/nature23675
7 M. Giustina,, M.A.M. Versteegh,, S. Wengerowsky,, J. Handsteiner,, A. Hochrainer,, K. Phelan,, F. Steinlechner,, J. Kofler,, J. Larsson,, C. Abellán,, W. Amaya,, V. Pruneri,, M.W. Mitchell,, J. Beyer,, T. Gerrits,, A.E. Lita,, L.K. Shalm,, S.W. Nam,, T. Scheidl,, R. Ursin,, B. Wittmann,, A. Zeilinger,: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115(25), 250401 (2015)
https://doi.org/10.1103/PhysRevLett.115.250401
8 B. Hensen,, H. Bernien,, A.E. Dréau,, A. Reiserer,, N. Kalb,, M.S. Blok,, J. Ruitenberg,, R.F. Vermeulen,, R.N. Schouten,, C. Abellán,, W. Amaya,, V. Pruneri,, M.W. Mitchell,, M. Markham,, D.J. Twitchen,, D. Elkouss,, S. Wehner,, T.H. Taminiau,, R. Hanson,: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015)
https://doi.org/10.1038/nature15759
9 L.K. Shalm,, E. Meyer-Scott,, B.G. Christensen,, P. Bierhorst,, M.A. Wayne,, M.J. Stevens,, T. Gerrits,, S. Glancy,, D.R. Hamel,, M.S. Allman,, K.J. Coakley,, S.D. Dyer,, C. Hodge,, A.E. Lita,, V.B. Verma,, C. Lambrocco,, E. Tortorici,, A.L. Migdall,, Y. Zhang,, D.R. Kumor,, W.H. Farr,, F. Marsili,, M.D. Shaw,, J.A. Stern,, C. Abellán,, W. Amaya,, V. Pruneri,, T. Jennewein,, M.W. Mitchell,, P.G. Kwiat,, J.C. Bienfang,, R.P. Mirin,, E. Knill,, S.W. Nam,: Strong loophole-free test of local realism. Phys. Rev. Lett. 115(25), 250402 (2015)
https://doi.org/10.1103/PhysRevLett.115.250402
10 T.R. Bromley,, J.M. Arrazola,, S. Jahangiri,, J. Izaac,, N. Quesada,, A.D. Gran,, M. Schuld,, J. Swinarton,, Z. Zabaneh,, N. Killoran,: Applications of near-term photonic quantum computers: software and algorithms. Quan. Sci. Technol. 5(3), 034010 (2020)
https://doi.org/10.1088/2058-9565/ab8504
11 J. Wang,, F. Sciarrino,, A. Laing,, M.G. Thompson,: Integrated photonic quantum technologies. Nat. Photon. 14(5), 273–284 (2020)
https://doi.org/10.1038/s41566-019-0532-1
12 J.W. Silverstone,, J. Wang,, D. Bonneau,, P. Sibson,, R. Santagati,, C. Erven,, J.L. O'Brien,, M.G. Thompson,: Silicon quantum photonics. In: Proceedings of International Conference on Optical MEMS and Nanophotonics (OMN). Singapore: IEEE (2016)
https://doi.org/10.1109/OMN.2016.7565856
13 J.C. Adcock,, J. Bao,, Y. Chi,, X. Chen,, D. Bacco,, Q. Gong,, L.K. Oxenlowe,, J. Wang,, Y. Ding,: Advances in silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–24 (2021)
https://doi.org/10.1109/JSTQE.2020.3025737
14 P. Sibson,, J.E. Kennard,, S. Stanisic,, C. Erven,, J.L. O’Brien,, M.G. Thompson,: Integrated silicon photonics for high-speed quantum key distribution. Optica 4(2), 172–177 (2017)
https://doi.org/10.1364/OPTICA.4.000172
15 D. Llewellyn,, Y. Ding,, I.I. Faruque,, S. Paesani,, D. Bacco,, R. Santagati,, Y.J. Qian,, Y. Li,, Y.F. Xiao,, M. Huber,, M. Malik,, G.F. Sinclair,, X. Zhou,, K. Rottwitt,, J.L. O’Brien,, J.G. Rarity,, Q. Gong,, L.K. Oxenlowe,, J. Wang,, M.G. Thompson,: Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16(2), 148–153 (2020)
https://doi.org/10.1038/s41567-019-0727-x
16 C. Vigliar,, S. Paesani,, Y.H. Ding,, J.C. Adcock,, J.W. Wang,, S. Morley-Short,, D. Bacco,, L.K. Oxenløwe,, M.G. Thompson,, J.G. Rarity,, A. Laing,: Error protected qubits in a silicon photonic chip. Nat. Phys. 17(10), 1137–1143 (2020)
https://doi.org/10.1038/s41567-021-01333-w
17 S. Paesani,, Y. Ding,, R. Santagati,, L. Chakhmakhchyan,, C. Vigliar,, K. Rottwitt,, L.K. Oxenløwe,, J. Wang,, M.G. Thompson,, A. Laing,: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15(9), 925–929 (2019)
https://doi.org/10.1038/s41567-019-0567-8
18 T. Ono,, G.F. Sinclair,, D. Bonneau,, M.G. Thompson,, J.C.F. Matthews,, J.G. Rarity,: Observation of nonlinear interference on a silicon photonic chip. Opt. Lett. 44(5), 1277–1280 (2019)
https://doi.org/10.1364/OL.44.001277
19 T. Rudolph,: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017)
https://doi.org/10.1063/1.4976737
20 M. Levy,, R.M. Osgood,, R. Liu,, L.E. Cross,, A. Cargill, G.S.I.I.I., Kumar,, H. Bakhru,: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73(16), 2293– 2295 (1998)
https://doi.org/10.1063/1.121801
21 P. Rabiei,, J. Ma,, S. Khan,, J. Chiles,, S. Fathpour,: Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 21(21), 25573–25581 (2013)
https://doi.org/10.1364/OE.21.025573
22 G. Poberaj,, H. Hu,, W. Sohler,, P. Günter,: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)
https://doi.org/10.1002/lpor.201100035
23 M. Bazzan,, C. Sada,: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2(4), 040603 (2015)
https://doi.org/10.1063/1.4931601
24 P.O. Weigel,, J. Zhao,, K. Fang,, H. Al-Rubaye,, D. Trotter,, D. Hood,, J. Mudrick,, C. Dallo,, A.T. Pomerene,, A.L. Starbuck,, C.T. DeRose,, A.L. Lentine,, G. Rebeiz,, S. Mookherjea,: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26(18), 23728–23739 (2018)
https://doi.org/10.1364/OE.26.023728
25 Y. Sakashita,, H. Segawa,: Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys. 77(11), 5995–5999 (1995)
https://doi.org/10.1063/1.359183
26 Y. Nakata,, S. Gunji,, T. Okada,, M. Maeda,: Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Appl. Phys. A 79(4–6), 1279–1282 (2004)
https://doi.org/10.1007/s00339-004-2748-1
27 F. Gitmans,, Z. Sitar,, P. Günter,: Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy. Vacuum 46(8–10), 939–942 (1995)
https://doi.org/10.1016/0042-207X(95)00077-1
28 X. Lansiaux,, E. Dogheche,, D. Remiens,, M. Guilloux-viry,, A. Perrin,, P. Ruterana,: LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J. Appl. Phys. 90(10), 5274–5277 (2001)
https://doi.org/10.1063/1.1378332
29 M. Bruel,: Silicon on insulator material technology. Electron. Lett. 31(14), 1201–1202 (1995)
https://doi.org/10.1049/el:19950805
30 A.J. Mercante,, P. Yao,, S. Shi,, G. Schneider,, J. Murakowski,, D.W. Prather,: 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24(14), 15590–15595 (2016)
https://doi.org/10.1364/OE.24.015590
31 C. Wang,, M. Zhang,, X. Chen,, M. Bertrand,, A. Shams-Ansari,, S. Chandrasekhar,, P. Winzer,, M. Lončar,: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)
https://doi.org/10.1038/s41586-018-0551-y
32 C. Wang,, M. Zhang,, B. Stern,, M. Lipson,, M. Lončar,: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)
https://doi.org/10.1364/OE.26.001547
33 M. He,, M. Xu,, Y. Ren,, J. Jian,, Z. Ruan,, Y. Xu,, S. Gao,, S. Sun,, X. Wen,, L. Zhou,, L. Liu,, C. Guo,, H. Chen,, S. Yu,, L. Liu,, X. Cai,: High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13(5), 359–364 (2019)
https://doi.org/10.1038/s41566-019-0378-6
34 M. Zhang,, C. Wang,, R. Cheng,, A. Shams-Ansari,, M. Lončar,: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)
https://doi.org/10.1364/OPTICA.4.001536
35 M. Zhang,, C. Wang,, Y. Hu,, A. Shams-Ansari,, T. Ren,, S. Fan,, M. Lončar,: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)
https://doi.org/10.1038/s41566-018-0317-y
36 C. Wang,, M. Zhang,, M. Yu,, R. Zhu,, H. Hu,, M. Loncar,: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)
https://doi.org/10.1038/s41467-019-08969-6
37 M. Xu,, M. He,, H. Zhang,, J. Jian,, Y. Pan,, X. Liu,, L. Chen,, X. Meng,, H. Chen,, Z. Li,, X. Xiao,, S. Yu,, S. Yu,, X. Cai,: High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11(1), 3911 (2020)
https://doi.org/10.1038/s41467-020-17806-0
38 D. Pohl,, M. Reig Escalé, M., Madi,, F. Kaufmann,, P. Brotzer,, A. Sergeyev,, B. Guldimann,, P. Giaccari,, E. Alberti,, U. Meier,, R. Grange,: An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics 14(1), 24–29 (2020)
https://doi.org/10.1038/s41566-019-0529-9
39 D. Sun,, Y. Zhang,, D. Wang,, W. Song,, X. Liu,, J. Pang,, D. Geng,, Y. Sang,, H. Liu,: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)
https://doi.org/10.1038/s41377-020-00434-0
40 H. Li,, B. Ma,: Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13(1), 35–49 (2020)
https://doi.org/10.1007/s12200-019-0946-x
41 F. Chen,: Laser-written three dimensional nonlinear photonic crystals. Front. Optoelectron. 12(4), 342–343 (2019)
https://doi.org/10.1007/s12200-019-0982-6
42 J. Lu,, J.B. Surya,, X. Liu,, A.W. Bruch,, Z. Gong,, Y. Xu,, H.X. Tang,: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)
https://doi.org/10.1364/OPTICA.6.001455
43 X. Liu,, P. Ying,, X. Zhong,, J. Xu,, Y. Han,, S. Yu,, X. Cai,: Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett. 45(22), 6318–6321 (2020)
https://doi.org/10.1364/OL.410192
44 D. Thomson,, A. Zilkie,, J.E. Bowers,, T. Komljenovic,, G.T. Reed,, L. Vivien,, D. Marris-Morini,, E. Cassan,, L. Virot,, J.M. Fédéli,, J.M. Hartmann,, J.H. Schmid,, D.X. Xu,, F. Boeuf,, P. O’Brien,, G.Z. Mashanovich,, M. Nedeljkovic,: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)
https://doi.org/10.1088/2040-8978/18/7/073003
45 G.V. Treyz,, P.G. May,, J.M. Halbout,: Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect. Appl. Phys. Lett. 59(7), 771–773 (1991)
https://doi.org/10.1063/1.105338
46 A. Liu,, L. Liao,, D. Rubin,, H. Nguyen,, B. Ciftcioglu,, Y. Chetrit,, N. Izhaky,, M. Paniccia,: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660–668 (2007)
https://doi.org/10.1364/OE.15.000660
47 Y. Ding,, C. Peucheret,, H. Ou,, K. Yvind,: Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 39(18), 5348–5350 (2014)
https://doi.org/10.1364/OL.39.005348
48 J. Notaros,, F. Pavanello,, M. T. Wade,, C. M. Gentry,, A. Atabaki,, L. Alloatti,, R. J. Ram,, A. P. Miloš, Ultra-efficient CMOS fiber-to-chip grating couplers. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC). Anaheim: IEEE (2016)
https://doi.org/10.1364/OFC.2016.M2I.5
49 N. Hoppe,, W.S. Zaoui,, L. Rathgeber,, Y. Wang,, R.H. Klenk,, W. Vogel,, M. Kaschel,, S.L. Portalupi,, J. Burghartz,, M. Berroth,: Ultra-efficient silicon-on-insulator grating couplers with backside metal mirrors. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–6 (2020)
https://doi.org/10.1109/JSTQE.2019.2935296
50 T. Horikawa,, D. Shimura,, T. Mogami,: Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6(1), 9–15 (2016)
https://doi.org/10.1557/mrc.2015.84
51 A. Biberman,, M.J. Shaw,, E. Timurdogan,, J.B. Wright,, M.R. Watts,: Ultralow-loss silicon ring resonators. Opt. Lett. 37(20), 4236–4238 (2012)
https://doi.org/10.1364/OL.37.004236
52 Y. Liu,, C. Wu,, X. Gu,, Y. Kong,, X. Yu,, R. Ge,, X. Cai,, X. Qiang,, J. Wu,, X. Yang,, P. Xu,: High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring. Opt. Lett. 45(1), 73–76 (2020)
https://doi.org/10.1364/OL.45.000073
53 S. Paesani,, M. Borghi,, S. Signorini,, A. Maïnos,, L. Pavesi,, A. Laing,: Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11(1), 2505 (2020)
https://doi.org/10.1038/s41467-020-16187-8
54 J.B. Christensen,, J.G. Koefoed,, K. Rottwitt,, C. McKinstrie,: Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation. arxiv preprint arxiv: 1711. 02401 (2017)
https://doi.org/10.1364/CLEO_QELS.2018.FTh1G.1
55 Z. Vernon,, M. Menotti,, C.C. Tison,, J.A. Steidle,, M.L. Fanto,, P.M. Thomas,, S.F. Preble,, A.M. Smith,, P.M. Alsing,, M. Liscidini,, J.E. Sipe,: Truly unentangled photon pairs without spectral filtering. Opt. Lett. 42(18), 3638–3641 (2017)
https://doi.org/10.1364/OL.42.003638
56 H. Zhu,, Q. Li,, H. Han,, Z. Li,, X. Zhang,, H. Zhang,, H. Hu,: Hybrid mono-crystalline silicon and lithium niobate thin films. Chin. Opt. Lett. 19, 060017 (2021)
https://doi.org/10.3788/COL202119.060017
57 P.O. Weigel,, M. Savanier,, C.T. DeRose,, A.T. Pomerene,, A.L. Starbuck,, A.L. Lentine,, V. Stenger,, S. Mookherjea,: Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 6(1), 22301 (2016)
https://doi.org/10.1038/srep22301
58 I. Krasnokutska,, R.J. Chapman,, J.J. Tambasco,, A. Peruzzo,: High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 27(13), 17681–17685 (2019)
https://doi.org/10.1364/OE.27.017681
59 B. Chen,, Z. Ruan,, J. Hu,, J. Wang,, C. Lu,, A.P.T. Lau,, C. Guo,, K. Chen,, P. Chen,, L. Liu,: Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Opt. Express 29(2), 1289–1295 (2021)
https://doi.org/10.1364/OE.413820
60 Z. Ruan,, J. Hu,, Y. Xue,, J. Liu,, B. Chen,, J. Wang,, K. Chen,, P. Chen,, L. Liu,: Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express 28(24), 35615–35621 (2020)
https://doi.org/10.1364/OE.411284
61 J. E. Bowers,, A. Y. Liu, A comparison of four approaches to photonic integration. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: IEEE (2017)
https://doi.org/10.1364/OFC.2017.M2B.4
62 Y. Ogiso,, J. Ozaki,, Y. Ueda,, N. Kashio,, N. Kikuchi,, E. Yamada,, H. Tanobe,, S. Kanazawa,, H. Yamazaki,, Y. Ohiso,, T. Fujii,, M. Kohtoku,: Over 67 GHz bandwidth and 15 V Vπ InP-based optical IQ modulator with nipn heterostructure. J. Lightwave Technol. 35(8), 1450–1455 (2017)
https://doi.org/10.1109/JLT.2016.2639542
63 L. Ottaviano,, M. Pu,, E. Semenova,, K. Yvind,: Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator. Opt. Lett. 41(17), 3996–3999 (2016)
https://doi.org/10.1364/OL.41.003996
64 M. Burla,, C. Hoessbacher,, W. Heni,, C. Haffner,, Y. Fedoryshyn,, D. Werner,, T. Watanabe,, H. Massler,, D. Elder,, L. Dalton,, J. Leuthold,: 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photon. 4(5), 056106 (2019)
https://doi.org/10.1063/1.5086868
65 C. Zhong,, J. Li,, H. Lin,: Graphene-based all-optical modulators. Front. Optoelectron. 13(2), 114–128 (2020)
https://doi.org/10.1007/s12200-020-1020-4
66 E. Knill,, R. Laflamme,, G.J. Milburn,: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)
https://doi.org/10.1038/35051009
67 S. Bartolucci,, P. Birchall,, H. Bombin,, H. Cable,, C. Dawson,, M. Gimeno-Segovia,, E. Johnston,, K. Kieling,, N. Nickerson,, M. Pant,, F. Pastawski,, T. Rudolph,, C. Sparrow,: Fusion-based quantum computation. arxiv preprint arxiv: 2101. 09310 (2021)
68 S. Takeda,, A. Furusawa,: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photon. 4(6), 060902 (2019)
https://doi.org/10.1063/1.5100160
69 J.E. Bourassa,, R.N. Alexander,, M. Vasmer,, A. Patil,, I. Tzitrin,, T. Matsuura,, D. Su,, B.Q. Baragiola,, S. Guha,, G. Dauphinais,, K.K. Sabapathy,, N.C. Menicucci,, I. Dhand,: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021)
https://doi.org/10.22331/q-2021-02-04-392
70 K. Azuma,, K. Tamaki,, H.K. Lo,: All-photonic quantum repeaters. Nat. Commun. 6(1), 6787 (2015)
https://doi.org/10.1038/ncomms7787
71 J.C. Adcock,, S. Morley-Short,, J.W. Silverstone,, M.G. Thompson,: Hard limits on the postselectability of optical graph states. Quan. Sci. Technol. 4, 015010 (2018)
https://doi.org/10.1088/2058-9565/aae950
72 A.L. Migdall,, D. Branning,, S. Castelletto,: Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66(5), 053805 (2002)
https://doi.org/10.1103/PhysRevA.66.053805
73 T.B. Pittman,, B.C. Jacobs,, P. Franson,: Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66(4), 042303 (2002)
https://doi.org/10.1103/PhysRevA.66.042303
74 D. Bonneau,, G.J. Mendoza,, J.L. O’Brien,, M.G. Thompson,: Effect of loss on multiplexed single-photon sources. New J. Phys. 17(4), 043057 (2015)
https://doi.org/10.1088/1367-2630/17/4/043057
75 K. Fumihiro,, P. Kwiat,: High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5(10), eaaw8586 (2019)
https://doi.org/10.1126/sciadv.aaw8586
76 M.J. Collins,, C. Xiong,, I.H. Rey,, T.D. Vo,, J. He,, S. Shahnia,, C. Reardon,, T.F. Krauss,, M.J. Steel,, A.S. Clark,, B.J. Eggleton,: Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4(1), 2582 (2013)
https://doi.org/10.1038/ncomms3582
77 C. Joshi,, A. Farsi,, S. Clemmen,, S. Ramelow,, A.L. Gaeta,: Frequency multiplexing for quasi-deterministic heralded singlephoton sources. Nat. Commun. 9(1), 847 (2018)
https://doi.org/10.1038/s41467-018-03254-4
78 S. Thomas,, M. Billard,, N. Coste,, S. Wein,, P. Ollivier,, O. Krebs,, L. Tazaïrt,, A. Harouri,, A. Lemaitre,, I. Sagnes,, C. Anton,, L. Lanco,, N. Somaschi,, J. Loredo,, P. Senellart,: Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126(23), 233601 (2021)
https://doi.org/10.1103/PhysRevLett.126.233601
79 N. Tomm,, A. Javadi,, N.O. Antoniadis,, D. Najer,, M.C. Löbl,, A.R. Korsch,, R. Schott,, S.R. Valentin,, A.D. Wieck,, A. Ludwig,, R.J. Warburton,: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16(4), 399–403 (2021)
https://doi.org/10.1038/s41565-020-00831-x
80 S. Bartolucci,, P. Birchall,, M. Gimeno-Segovia,, E. Johnston,, K. Kieling,, M. Mihir Pant,, T. Rudolph,, J. Smith,, C. Sparrow,, M. Vidrighin,: Creation of entangled photonic states using linear optics. arxiv preprint arxiv: 2106. 13825 (2021)
81 S. Paesani,, J. Bulmer,, A. Jones,, R. Santagati,, A. Laing,: Scheme for universal high-dimensional quantum computation with linear optics. Phys. Rev. Lett. 126(23), 230504 (2021)
https://doi.org/10.1103/PhysRevLett.126.230504
82 X. Zhang,, B. Bell,, M. Pelusi,, J. He,, W. Geng,, Y. Kong,, P. Zhang,, C. Xiong,, B.J. Eggleton,: High repetition rate correlated photon pair generation in integrated silicon nanowires. Appl. Opt. 56(30), 8420–8424 (2017)
https://doi.org/10.1364/AO.56.008420
83 J. Münzberg,, A. Vetter,, F. Beutel,, W. Hartmann,, S. Ferrari,, W.H.P. Pernice,, C. Rockstuhl,: Superconducting nanowire single- photon detector implemented in a 2D photonic crystal cavity. Optica 5(5), 658–665 (2018)
https://doi.org/10.1364/OPTICA.5.000658
84 J F Tasker, J Frazer, G Ferranti, F Allen, L Brunel, S Tanzilli, V D’Auria, J. Matthews 9~GHz measurement of squeezed light by interfacing silicon photonics and integrated electronics. arxiv preprint arxiv: 2009. 14318 (2020)
85 F. Eltes,, G.E. Villarreal-Garcia,, D. Caimi,, H. Siegwart,, A.A. Gentile,, A. Hart,, P. Stark,, G.D. Marshall,, M.G. Thompson,, J. Barreto,, J. Fompeyrine,, S. Abel,: An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19(11), 1164–1168 (2020)
https://doi.org/10.1038/s41563-020-0725-5
86 Y. Li,, T. Lan,, J. Li,, Z. Wang,: High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl. Opt. 59(22), 6694–6701 (2020)
https://doi.org/10.1364/AO.395897
[1] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[2] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[3] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[4] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[5] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[6] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[7] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[8] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[9] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[10] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[11] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[12] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[13] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed