Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (4) : 35    https://doi.org/10.1007/s12200-023-00091-2
RESEARCH ARTICLE
Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution
Zunyu Liu1, Chaoyu Zhao2,4, Shuangfeng Jia3, Weiwei Meng3, Pei Li3, Shuwen Yan1, Yongfa Cheng1, Jinshui Miao4, Lei Zhang2(), Yihua Gao1, Jianbo Wang3, Luying Li1()
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430061, China
3. Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-Structures and the Institute for Advanced Studies, School of Physics and Technology, Wuhan University, Wuhan 430072, China
4. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
 Download: PDF(1983 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Multi-dimensional heterojunction materials have attracted much attention due to their intriguing properties, such as high efficiency, wide band gap regulation, low dimensional limitation, versatility and scalability. To further improve the performance of materials, researchers have combined materials with various dimensions using a wide variety of techniques. However, research on growth mechanism of such composite materials is still lacking. In this paper, the growth mechanism of multidimensional heterojunction composite material is studied using quasi-two-dimensional (quasi-2D) antimonene and quasione-dimensional (quasi-1D) antimony sulfide as examples. These are synthesized by a simple thermal injection method. It is observed that the consequent nanorods are oriented along six-fold symmetric directions on the nanoplate, forming ordered quasi-1D/quasi-2D heterostructures. Comprehensive transmission electron microscopy (TEM) characterizations confirm the chemical information and reveal orientational relationship between Sb2S3 nanorods and the Sb nanoplate as substrate. Further density functional theory calculations indicate that interfacial binding energy is the primary deciding factor for the self-assembly of ordered structures. These details may fill the gaps in the research on multi-dimensional composite materials with ordered structures, and promote their future versatile applications.

Keywords Multi-dimensional composite materials      Ordered heterostructures      Self-assembly      Growth mechanism     
Corresponding Author(s): Lei Zhang,Luying Li   
Issue Date: 24 November 2023
 Cite this article:   
Zunyu Liu,Chaoyu Zhao,Shuangfeng Jia, et al. Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution[J]. Front. Optoelectron., 2023, 16(4): 35.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00091-2
https://academic.hep.com.cn/foe/EN/Y2023/V16/I4/35
1 Q. Meng,, M. Guan,, Y. Huang,, L. Li,, F. Wu,, R. Chen,: Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat. 4(8), e12313 (2022)
https://doi.org/10.1002/inf2.12313
2 J. Low,, J. Yu,, M. Jaroniec,, S. Wageh,, A.A. Al-Ghamdi,: Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017)
https://doi.org/10.1002/adma.201601694
3 J. Yang,, X. Zhu,, Q. Yu,, M. He,, W. Zhang,, Z. Mo,, J. Yuan,, Y. She,, H. Xu,, H. Li,: Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. Chin. J. Catal. 43(5), 1286–1294 (2022)
https://doi.org/10.1016/S1872-2067(21)63954-2
4 H. Gu,, C. Liang,, Y. Xia,, Q. Wei,, T. Liu,, Y. Yang,, W. Hui,, H. Chen,, T. Niu,, L. Chao,, Z. Wu,, X. Xie,, J. Qiu,, G. Shao,, X. Gao,, G. Xing,, Y. Chen,, W. Huang,: Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 65, 104050 (2019)
https://doi.org/10.1016/j.nanoen.2019.104050
5 M. Ge,, H. Hao,, Q. Lv,, J. Wu,, W. Li,: Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochim. Acta 330, 135236 (2020)
https://doi.org/10.1016/j.electacta.2019.135236
6 Y. Cheng,, Y. Ma,, L. Li,, M. Zhu,, Y. Yue,, W. Liu,, L. Wang,, S. Jia,, C. Li,, T. Qi,, J. Wang,, Y. Gao,: Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020)
https://doi.org/10.1021/acsnano.9b08952
7 C. Chen,, S. Qiu,, M. Cui,, S. Qin,, G. Yan,, H. Zhao,, L. Wang,, Q. Xue,: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017)
https://doi.org/10.1016/j.carbon.2016.12.044
8 L. Zhang,, T. Gong,, Z. Yu,, H. Dai,, Z. Yang,, G. Chen,, J. Li,, R. Pan,, H. Wang,, Z. Guo,, H. Zhang,, X. Fu,: Recent advances in hybridization, doping, and functionalization of 2D Xenes. Adv. Funct. Mater. 31(1), 2005471 (2021)
https://doi.org/10.1002/adfm.202005471
9 Y. Song,, Z. Liang,, X. Jiang,, Y. Chen,, Z. Li,, L. Lu,, Y. Ge,, K. Wang,, J. Zheng,, S. Lu,, J. Ji,, H. Zhang,: Few-layer anti-monene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4(4), 045010 (2017)
https://doi.org/10.1088/2053-1583/aa87c1
10 W. Tao,, X. Ji,, X. Zhu,, L. Li,, J. Wang,, Y. Zhang,, P.E. Saw,, W. Li,, N. Kong,, M.A. Islam,, T. Gan,, X. Zeng,, H. Zhang,, M. Mahmoudi,, G.J. Tearney,, O.C. Farokhzad,: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30(38), 1802061 (2018)
https://doi.org/10.1002/adma.201802061
11 Y. Song,, Y. Chen,, X. Jiang,, W. Liang,, K. Wang,, Z. Liang,, Y. Ge,, F. Zhang,, L. Wu,, J. Zheng,, J. Ji,, H. Zhang,: Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 6(13), 1701287 (2018)
https://doi.org/10.1002/adom.201701287
12 X. Tang,, L. Hu,, T. Fan,, L. Zhang,, L. Zhu,, H. Li,, H. Liu,, J. Liang,, K. Wang,, Z. Li,, S. Ruan,, Y. Zhang,, D. Fan,, W. Chen,, Y.-J. Zeng,, H. Zhang,: Robust above-room-temperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms. Adv. Funct. Mater. 29(15), 1808746 (2019)
https://doi.org/10.1002/adfm.201808746
13 T. Zhao,, J. Guo,, T. Li,, Z. Wang,, M. Peng,, F. Zhong,, Y. Chen,, Y. Yu,, T. Xu,, R. Xie,, P. Gao,, X. Wang,, W. Hu,: Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650–1671 (2023)
https://doi.org/10.1039/D2CS00657J
14 Z. Wang,, H. Xia,, P. Wang,, X. Zhou,, C. Liu,, Q. Zhang,, F. Wang,, M. Huang,, S. Chen,, P. Wu,, Y. Chen,, J. Ye,, S. Huang,, H. Yan,, L. Gu,, J. Miao,, T. Li,, X. Chen,, W. Lu,, P. Zhou,, W. Hu,: Controllable doping in 2D layered materials. Adv. Mater. 33(48), 2104942 (2021)
https://doi.org/10.1002/adma.202104942
15 J. Chen,, J. Qi,, R. Liu,, X. Zhu,, Z. Wan,, Q. Zhao,, S. Tao,, C. Dong,, G.Y. Ashebir,, W. Chen,, R. Peng,, F. Zhang,, S. Yang,, X. Tian,, M. Wang,: Preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells. Commun Chem. 2(1), 121 (2019)
https://doi.org/10.1038/s42004-019-0225-1
16 W. Lian,, C. Jiang,, Y. Yin,, R. Tang,, G. Li,, L. Zhang,, B. Che,, T. Chen,: Revealing composition and structure dependent deeplevel defect in antimony trisulfide photovoltaics. Nat. Commun. 12(1), 3260 (2021)
https://doi.org/10.1038/s41467-021-23592-0
17 F. Xie,, L. Zhang,, Q. Gu,, D. Chao,, M. Jaroniec,, S.-Z. Qiao,: Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 60, 591–599 (2019)
https://doi.org/10.1016/j.nanoen.2019.04.008
18 L. Li,, Y. Cheng,, H. Cao,, Z. Liang,, Z. Liu,, S. Yan,, L. Li,, S. Jia,, J. Wang,, Y. Gao,: MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022)
https://doi.org/10.1016/j.nanoen.2022.106986
19 Y. Cheng,, L. Li,, Z. Liu,, S. Yan,, F. Cheng,, Y. Yue,, S. Jia,, J. Wang,, Y. Gao,, L. Li,: 3D Porous MXene aerogel through gas foaming for multifunctional pressure sensor. Research 2022, 9843268 (2022)
https://doi.org/10.34133/2022/9843268
20 X. Ji,, K.T. Lee,, L.F. Nazar,: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009)
https://doi.org/10.1038/nmat2460
21 F. Li,, M. Xue,, J. Li,, X. Ma,, L. Chen,, X. Zhang,, D.R. MacFarlane,, J. Zhang,: Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem. Int. Ed. 56(46), 14718–14722 (2017)
https://doi.org/10.1002/anie.201710038
22 G. Kresse,, J. Hafner,: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)
https://doi.org/10.1103/PhysRevB.47.558
23 G. Kresse,, J. Furthmüller,: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
24 P.E. Blöchl,: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
25 G. Kresse,, D. Joubert,: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
26 J.P. Perdew,, K. Burke,, M. Ernzerhof,: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
27 S. Grimme,, J. Antony,, S. Ehrlich,, H. Krieg,: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)
https://doi.org/10.1063/1.3382344
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed