Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (4) : 42    https://doi.org/10.1007/s12200-023-00097-w
RESEARCH ARTICLE
Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response
Biyuan Zheng1, Xingxia Sun1, Weihao Zheng2, Chenguang Zhu1, Chao Ma1, Anlian Pan1, Dong Li1(), Shengman Li1,3()
1. Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2. College of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
3. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
 Download: PDF(2063 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dynamically engineering the optical and electrical properties in two-dimensional (2D) materials is of great significance for designing the related functions and applications. The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials; however, this approach still remains to be explored in 2D materials. Here, we systematically demonstrate the growth of vanadium-doped molybdenum disulfide (V-doped MoS2) monolayers via an alkali metal-assisted chemical vapor deposition method. Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS2 monolayers. This was also confirmed by Raman and X-ray photoelectron spectroscopy. Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS2 monolayers (with low doping concentration). Most importantly, through temperature-dependent study, we observed efficient valley scattering of the B-exciton, greatly enhancing its emission intensity. Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS2, where a clear n-type behavior transited first to ambipolar and then to lightly p-type charge carrier transport. In addition, visible to infrared wide-band photodetectors based on V-doped MoS2 monolayers (with low doping concentration) were demonstrated. The V-doped MoS2 monolayers with distinct B-exciton emission, enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and offer novel materials for optoelectronic applications.

Keywords Atomic substitution      V-doped MoS2      Distinct B-exciton      Broad spectral response     
Corresponding Author(s): Dong Li,Shengman Li   
Issue Date: 13 December 2023
 Cite this article:   
Biyuan Zheng,Xingxia Sun,Weihao Zheng, et al. Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response[J]. Front. Optoelectron., 2023, 16(4): 42.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00097-w
https://academic.hep.com.cn/foe/EN/Y2023/V16/I4/42
1 W. Li,, X. Gong,, Z. Yu,, L. Ma,, W. Sun,, S. Gao,, C. Koroglu,, W. Wang,, L. Liu,, T. Li,, H. Ning,, D. Fan,, Y. Xu,, X. Tu,, T. Xu,, L. Sun,, W. Wang,, J. Lu,, Z. Ni,, J. Li,, X. Duan,, P. Wang,, Y. Nie,, H. Qiu,, Y. Shi,, E. Pop,, J. Wang,, X. Wang,: Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023)
https://doi.org/10.1038/s41586-022-05431-4
2 K. Kang,, S. Xie,, L. Huang,, Y. Han,, P.Y. Huang,, K.F. Mak,, C.-J. Kim,, D. Muller,, J. Park,: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)
https://doi.org/10.1038/nature14417
3 B. Radisavljevic,, A. Radenovic,, J. Brivio,, V. Giacometti,, A. Kis,: Single-layer MoS2 transistors. Nat. Nanotech. 6(3), 147–150 (2011)
https://doi.org/10.1038/nnano.2010.279
4 Y. Zi,, J. Zhu,, L. Hu,, M. Wang,, W. Huang,: Nanoengineering of tin monosulfide (SnS)-based structures for emerging applications. Small Science 2(3), 2100098 (2022)
https://doi.org/10.1002/smsc.202100098
5 T. Li,, W. Guo,, L. Ma,, W. Li,, Z. Yu,, Z. Han,, S. Gao,, L. Liu,, D. Fan,, Z. Wang,, Y. Yang,, W. Lin,, Z. Luo,, X. Chen,, N. Dai,, X. Tu,, D. Pan,, Y. Yao,, P. Wang,, Y. Nie,, J. Wang,, Y. Shi,, X. Wang,: Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotech. 16(11), 1201–1207 (2021)
https://doi.org/10.1038/s41565-021-00963-8
6 Z. Lin,, Y. Liu,, U. Halim,, M. Ding,, Y. Liu,, Y. Wang,, C. Jia,, P. Chen,, X. Duan,, C. Wang,, F. Song,, M. Li,, C. Wan,, Y. Huang,, X. Duan,: Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018)
https://doi.org/10.1038/s41586-018-0574-4
7 W. Huang,, J. Zhu,, M. Wang,, L. Hu,, Y. Tang,, Y. Shu,, Z. Xie,, H. Zhang,: Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater.Funct. Mater. 31(10), 2007584 (2021)
https://doi.org/10.1002/adfm.202007584
8 O. Lopez-Sanchez,, D. Lembke,, M. Kayci,, A. Radenovic,, A. Kis,: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8(7), 497–501 (2013)
https://doi.org/10.1038/nnano.2013.100
9 J. Zhu,, S. Wei,, J. Tang,, Y. Hu,, X. Dai,, Y. Zi,, M. Wang,, Y. Xiang,, W. Huang,: MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6(14), 13629–13636 (2023)
https://doi.org/10.1021/acsanm.3c02317
10 W. Huang,, M. Wang,, L. Hu,, C. Wang,, Z. Xie,, H. Zhang,: Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. Funct. Mater. 30(42), 2003301 (2020)
https://doi.org/10.1002/adfm.202003301
11 C. Wang,, J. Xu,, Y. Wang,, Y. Song,, J. Guo,, W. Huang,, Y. Ge,, L. Hu,, J. Liu,, H. Zhang,: MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64(1), 259–265 (2021)
https://doi.org/10.1007/s40843-020-1409-7
12 K. Rong,, X. Duan,, B. Wang,, D. Reichenberg,, A. Cohen,, C.-L. Liu,, P.K. Mohapatra,, A. Patsha,, V. Gorovoy,, S. Mukherjee,, V. Kleiner,, A. Ismach,, E. Koren,, E. Hasman,: Spin-valley Rashba monolayer laser. Nat. Mater. 22(9), 1085–1093 (2023)
https://doi.org/10.1038/s41563-023-01603-3
13 Y. Zi,, Y. Hu,, J. Pu,, M. Wang,, W. Huang,: Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small 19(19), 2208274 (2023)
https://doi.org/10.1002/smll.202208274
14 K.F. Mak,, K. He,, J. Shan,, T.F. Heinz,: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7(8), 494 (2012)
https://doi.org/10.1038/nnano.2012.96
15 W. Huang,, C. Ma,, C. Li,, Y. Zhang,, L. Hu,, T. Chen,, Y. Tang,, J. Ju,, H. Zhang,: Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 9(8), 2577–2585 (2020)
https://doi.org/10.1515/nanoph-2020-0134
16 K.F. Mak,, C. Lee,, J. Hone,, J. Shan,, T.F. Heinz,: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
17 A. Steinhoff,, J.H. Kim,, F. Jahnke,, M. Rosner,, D.S. Kim,, C. Lee,, G.H. Han,, M.S. Jeong,, T.O. Wehling,, C. Gies,: Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 15(10), 6841–6847 (2015)
https://doi.org/10.1021/acs.nanolett.5b02719
18 F. Wu,, F. Qu,, A.H. MacDonald,: Exciton band structure of monolayer MoS2. Phys. Rev. B 91(7), 075310 (2015)
https://doi.org/10.1103/PhysRevB.91.075310
19 T. Cheiwchanchamnangij,, W.R.L. Lambrecht,: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85(20), 205302 (2012)
https://doi.org/10.1103/PhysRevB.85.205302
20 A. Splendiani,, L. Sun,, Y. Zhang,, T. Li,, J. Kim,, C.-Y. Chim,, G. Galli,, F. Wang,: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)
https://doi.org/10.1021/nl903868w
21 G. Berghäuser,, E. Malic,: Analytical approach to excitonic properties of MoS2. Phys. Rev. B 89(12), 125309 (2014)
https://doi.org/10.1103/PhysRevB.89.125309
22 W. Zhou,, X. Zou,, S. Najmaei,, Z. Liu,, Y. Shi,, J. Kong,, J. Lou,, P.M. Ajayan,, B.I. Yakobson,, J.-C. Idrobo,: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013)
https://doi.org/10.1021/nl4007479
23 R. Addou,, L. Colombo,, R.M. Wallace,: Surface defects on natural MoS2. ACS Appl. Mater. Interfaces 7(22), 11921–11929 (2015)
https://doi.org/10.1021/acsami.5b01778
24 D.L. Duong,, S.J. Yun,, Y. Kim,, S.-G. Kim,, Y.H. Lee,: Long-range ferromagnetic ordering in vanadium-doped WSe2 semiconductor. Appl. Phys. Lett. 115(24), 242406 (2019)
https://doi.org/10.1063/1.5131566
25 S. Fan,, S.J. Yun,, W.J. Yu,, Y.H. Lee,: Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 7(3), 1902751 (2020)
https://doi.org/10.1002/advs.201902751
26 H. Duan,, P. Guo,, C. Wang,, H. Tan,, W. Hu,, W. Yan,, C. Ma,, L. Cai,, L. Song,, W. Zhang,, Z. Sun,, L. Wang,, W. Zhao,, Y. Yin,, X. Li,, S. Wei,: Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun.Commun. 10(1), 1584 (2019)
https://doi.org/10.1038/s41467-019-09531-0
27 J. Zhou,, J. Lin,, H. Sims,, C. Jiang,, C. Cong,, J.A. Brehm,, Z. Zhang,, L. Niu,, Y. Chen,, Y. Zhou,, Y. Wang,, F. Liu,, C. Zhu,, T. Yu,, K. Suenaga,, R. Mishra,, S.T. Pantelides,, Z.-G. Zhu,, W. Gao,, Z. Liu,, W. Zhou,: Synthesis of co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 32(29), 2003123 (2020)
https://doi.org/10.1002/adma.202003123
28 J. Zou,, Z. Cai,, Y. Lai,, J. Tan,, R. Zhang,, S. Feng,, G. Wang,, J. Lin,, B. Liu,, H.-M. Cheng,: Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15(4), 7340–7347 (2021)
https://doi.org/10.1021/acsnano.1c00596
29 L. Zhang,, Z. Wang,, J. Zhang,, B. Chen,, Z. Liang,, X. Quan,, Y. Dai,, J. Huang,, Y. Wang,, S.-J. Liang,, M. Long,, M. Si,, F. Miao,, Y. Peng,: Quasi-continuous tuning of carrier polarity in monolayered molybdenum dichalcogenides through substitutional vanadium doping. Adv. Funct. Mater.Funct. Mater. 32(46), 2204760 (2022)
https://doi.org/10.1002/adfm.202204760
30 J. Zhang,, Y. Zhu,, M. Tebyetekerwa,, D. Li,, D. Liu,, W. Lei,, L. Wang,, Y. Zhang,, Y. Lu,: Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors. ACS Appl. Nano Mater. 4(1), 769–777 (2020)
https://doi.org/10.1021/acsanm.0c03083
31 J. Zhou,, J. Lin,, X. Huang,, Y. Zhou,, Y. Chen,, J. Xia,, H. Wang,, Y. Xie,, H. Yu,, J. Lei,, D. Wu,, F. Liu,, Q. Fu,, Q. Zeng,, C.H. Hsu,, C. Yang,, L. Lu,, T. Yu,, Z. Shen,, H. Lin,, B.I. Yakobson,, Q. Liu,, K. Suenaga,, G. Liu,, Z. Liu,: A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018)
https://doi.org/10.1038/s41586-018-0008-3
32 S. Li,, S. Wang,, D.-M. Tang,, W. Zhao,, H. Xu,, L. Chu,, Y. Bando,, D. Golberg,, G. Eda,: Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015)
https://doi.org/10.1016/j.apmt.2015.09.001
33 D. Ganta,, S. Sinha,, R.T. Haasch,: 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 21(1), 19–27 (2014)
https://doi.org/10.1116/11.20140401
34 J.-K. Qin,, W.-Z. Shao,, C.-Y. Xu,, Y. Li,, D.-D. Ren,, X.-G. Song,, L. Zhen,: Chemical vapor deposition growth of degenerate p-Type Mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Interfaces 9(18), 15583–15591 (2017)
https://doi.org/10.1021/acsami.7b02101
35 J. Gao,, Y.D. Kim,, L. Liang,, J.C. Idrobo,, P. Chow,, J. Tan,, B. Li,, L. Li,, B.G. Sumpter,, T.-M. Lu,, V. Meunier,, J. Hone,, N. Koratkar,: Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28(44), 9735–9743 (2016)
https://doi.org/10.1002/adma.201601104
36 D. Gao,, Q. Xue,, X. Mao,, W. Wang,, Q. Xu,, D. Xue,: Ferromagnetism in ultrathin VS2 nanosheets. J. Mater. Chem. C 1(37), 5909–5916 (2013)
https://doi.org/10.1039/c3tc31233j
37 Y. Li,, J. Zhang,, G. Zheng,, Y. Sun,, S.S. Hong,, F. Xiong,, S. Wang,, H.R. Lee,, Y. Cui,: Lateral and vertical two-dimensional layered topological insulator heterostructures. ACS Nano 9(11), 10916–10921 (2015)
https://doi.org/10.1021/acsnano.5b04068
38 W. Fang,, H. Zhao,, Y. Xie,, J. Fang,, J. Xu,, Z. Chen,: Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 7(23), 13044–13052 (2015)
https://doi.org/10.1021/acsami.5b03124
39 S. Sasaki,, Y. Kobayashi,, Z. Liu,, K. Suenaga,, Y. Maniwa,, Y. Miyauchi,, Y. Miyata,: Growth and optical properties of Nbdoped WS2 monolayers. Appl. Phys. Express 9(7), 071201 (2016)
https://doi.org/10.7567/APEX.9.071201
40 T.H. Ly,, S.J. Yun,, Q.H. Thi,, J. Zhao,: Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11(7), 7534–7541 (2017)
https://doi.org/10.1021/acsnano.7b04287
41 D. Kaplan,, K. Mills,, J. Lee,, S. Torrel,, V. Swaminathan,: Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition. J. Appl. Phys. 119(21), 214301 (2016)
https://doi.org/10.1063/1.4948662
42 T. Yan,, X. Qiao,, X. Liu,, P. Tan,, X. Zhang,: Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 105(10), 101901 (2014)
https://doi.org/10.1063/1.4895471
43 K.K. Tiong,, T.S. Shou,, C.H. Ho,: Temperature dependence piezoreflectance study of the effect of doping MoS2 with rhenium. J. Phys. Condens. MatterCondens. Matter 12(14), 3441 (2000)
https://doi.org/10.1088/0953-8984/12/14/319
44 N. Perea-López,, Z. Lin,, N.R. Pradhan,, A. Iñiguez-Rábago,, A. Laura Elías,, A. McCreary,, J. Lou,, P.M. Ajayan,, H. Terrones,, L. Balicas,, M. Terrones,: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1(1), 011004 (2014)
https://doi.org/10.1088/2053-1583/1/1/011004
45 C. Nie,, L. Yu,, X. Wei,, J. Shen,, W. Lu,, W. Chen,, S. Feng,, H. Shi,: Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 28(27), (2017)
https://doi.org/10.1088/1361-6528/aa7473
46 Y.H. Zhou,, H.N. An,, C. Gao,, Z.Q. Zheng,, B. Wang,: UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 237, 298–302 (2019)
https://doi.org/10.1016/j.matlet.2018.11.112
47 W. Zhang,, M.-H. Chiu,, C.-H. Chen,, W. Chen,, L.-J. Li,, A.T.S. Wee,: Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014)
https://doi.org/10.1021/nn503521c
48 M. Sun,, Q. Fang,, D. Xie,, Y. Sun,, L. Qian,, J. Xu,, P. Xiao,, C. Teng,, W. Li,, T. Ren,, Y. Zhang,: Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11(6), 3233–3243 (2018)
https://doi.org/10.1007/s12274-017-1855-1
49 P. Vabbina,, N. Choudhary,, A.-A. Chowdhury,, R. Sinha,, M. Karabiyik,, S. Das,, W. Choi,, N. Pala,: Highly sensitive wide band-width photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky Junction. ACS Appl. Mater. Interfaces 7(28), 15206–15213 (2015)
https://doi.org/10.1021/acsami.5b00887
50 T. Yang,, B. Zheng,, Z. Wang,, T. Xu,, C. Pan,, J. Zou,, X. Zhang,, Z. Qi,, H. Liu,, Y. Feng,, W. Hu,, F. Miao,, L. Sun,, X. Duan,, A. Pan,: Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. Commun. 8(1), 1906 (2017)
https://doi.org/10.1038/s41467-017-02093-z
51 Z. Zou,, D. Li,, J. Liang,, X. Zhang,, H. Liu,, C. Zhu,, X. Yang,, L. Li,, B. Zheng,, X. Sun,, Z. Zeng,, J. Yi,, X. Zhuang,, X. Wang,, A. Pan,: Epitaxial synthesis of ultrathin beta-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 12(11), 6480–6488 (2020)
https://doi.org/10.1039/C9NR10387B
52 X. Sun,, Y. Liu,, J. Shi,, C. Si,, J. Du,, X. Liu,, C. Jiang,, S. Yang,: Controllable synthesis of 2H–1T’ MoxRe(1–x)S2 lateral hetero-structures and their tunable optoelectronic properties. Adv. Mater. 35(38), 2304171 (2023)
https://doi.org/10.1002/adma.202304171
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed