|
|
|
Vapor growth of V-doped MoS2 monolayers with enhanced B-exciton emission and broad spectral response |
Biyuan Zheng1, Xingxia Sun1, Weihao Zheng2, Chenguang Zhu1, Chao Ma1, Anlian Pan1, Dong Li1( ), Shengman Li1,3( ) |
1. Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha 410082, China 2. College of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China 3. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China |
|
|
|
|
Abstract Dynamically engineering the optical and electrical properties in two-dimensional (2D) materials is of great significance for designing the related functions and applications. The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials; however, this approach still remains to be explored in 2D materials. Here, we systematically demonstrate the growth of vanadium-doped molybdenum disulfide (V-doped MoS2) monolayers via an alkali metal-assisted chemical vapor deposition method. Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS2 monolayers. This was also confirmed by Raman and X-ray photoelectron spectroscopy. Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS2 monolayers (with low doping concentration). Most importantly, through temperature-dependent study, we observed efficient valley scattering of the B-exciton, greatly enhancing its emission intensity. Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS2, where a clear n-type behavior transited first to ambipolar and then to lightly p-type charge carrier transport. In addition, visible to infrared wide-band photodetectors based on V-doped MoS2 monolayers (with low doping concentration) were demonstrated. The V-doped MoS2 monolayers with distinct B-exciton emission, enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and offer novel materials for optoelectronic applications.
|
| Keywords
Atomic substitution
V-doped MoS2
Distinct B-exciton
Broad spectral response
|
|
Corresponding Author(s):
Dong Li,Shengman Li
|
|
Issue Date: 13 December 2023
|
|
| 1 |
W. Li,, X. Gong,, Z. Yu,, L. Ma,, W. Sun,, S. Gao,, C. Koroglu,, W. Wang,, L. Liu,, T. Li,, H. Ning,, D. Fan,, Y. Xu,, X. Tu,, T. Xu,, L. Sun,, W. Wang,, J. Lu,, Z. Ni,, J. Li,, X. Duan,, P. Wang,, Y. Nie,, H. Qiu,, Y. Shi,, E. Pop,, J. Wang,, X. Wang,: Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023)
https://doi.org/10.1038/s41586-022-05431-4
|
| 2 |
K. Kang,, S. Xie,, L. Huang,, Y. Han,, P.Y. Huang,, K.F. Mak,, C.-J. Kim,, D. Muller,, J. Park,: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015)
https://doi.org/10.1038/nature14417
|
| 3 |
B. Radisavljevic,, A. Radenovic,, J. Brivio,, V. Giacometti,, A. Kis,: Single-layer MoS2 transistors. Nat. Nanotech. 6(3), 147–150 (2011)
https://doi.org/10.1038/nnano.2010.279
|
| 4 |
Y. Zi,, J. Zhu,, L. Hu,, M. Wang,, W. Huang,: Nanoengineering of tin monosulfide (SnS)-based structures for emerging applications. Small Science 2(3), 2100098 (2022)
https://doi.org/10.1002/smsc.202100098
|
| 5 |
T. Li,, W. Guo,, L. Ma,, W. Li,, Z. Yu,, Z. Han,, S. Gao,, L. Liu,, D. Fan,, Z. Wang,, Y. Yang,, W. Lin,, Z. Luo,, X. Chen,, N. Dai,, X. Tu,, D. Pan,, Y. Yao,, P. Wang,, Y. Nie,, J. Wang,, Y. Shi,, X. Wang,: Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotech. 16(11), 1201–1207 (2021)
https://doi.org/10.1038/s41565-021-00963-8
|
| 6 |
Z. Lin,, Y. Liu,, U. Halim,, M. Ding,, Y. Liu,, Y. Wang,, C. Jia,, P. Chen,, X. Duan,, C. Wang,, F. Song,, M. Li,, C. Wan,, Y. Huang,, X. Duan,: Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018)
https://doi.org/10.1038/s41586-018-0574-4
|
| 7 |
W. Huang,, J. Zhu,, M. Wang,, L. Hu,, Y. Tang,, Y. Shu,, Z. Xie,, H. Zhang,: Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater.Funct. Mater. 31(10), 2007584 (2021)
https://doi.org/10.1002/adfm.202007584
|
| 8 |
O. Lopez-Sanchez,, D. Lembke,, M. Kayci,, A. Radenovic,, A. Kis,: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8(7), 497–501 (2013)
https://doi.org/10.1038/nnano.2013.100
|
| 9 |
J. Zhu,, S. Wei,, J. Tang,, Y. Hu,, X. Dai,, Y. Zi,, M. Wang,, Y. Xiang,, W. Huang,: MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6(14), 13629–13636 (2023)
https://doi.org/10.1021/acsanm.3c02317
|
| 10 |
W. Huang,, M. Wang,, L. Hu,, C. Wang,, Z. Xie,, H. Zhang,: Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. Funct. Mater. 30(42), 2003301 (2020)
https://doi.org/10.1002/adfm.202003301
|
| 11 |
C. Wang,, J. Xu,, Y. Wang,, Y. Song,, J. Guo,, W. Huang,, Y. Ge,, L. Hu,, J. Liu,, H. Zhang,: MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64(1), 259–265 (2021)
https://doi.org/10.1007/s40843-020-1409-7
|
| 12 |
K. Rong,, X. Duan,, B. Wang,, D. Reichenberg,, A. Cohen,, C.-L. Liu,, P.K. Mohapatra,, A. Patsha,, V. Gorovoy,, S. Mukherjee,, V. Kleiner,, A. Ismach,, E. Koren,, E. Hasman,: Spin-valley Rashba monolayer laser. Nat. Mater. 22(9), 1085–1093 (2023)
https://doi.org/10.1038/s41563-023-01603-3
|
| 13 |
Y. Zi,, Y. Hu,, J. Pu,, M. Wang,, W. Huang,: Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small 19(19), 2208274 (2023)
https://doi.org/10.1002/smll.202208274
|
| 14 |
K.F. Mak,, K. He,, J. Shan,, T.F. Heinz,: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7(8), 494 (2012)
https://doi.org/10.1038/nnano.2012.96
|
| 15 |
W. Huang,, C. Ma,, C. Li,, Y. Zhang,, L. Hu,, T. Chen,, Y. Tang,, J. Ju,, H. Zhang,: Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 9(8), 2577–2585 (2020)
https://doi.org/10.1515/nanoph-2020-0134
|
| 16 |
K.F. Mak,, C. Lee,, J. Hone,, J. Shan,, T.F. Heinz,: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
|
| 17 |
A. Steinhoff,, J.H. Kim,, F. Jahnke,, M. Rosner,, D.S. Kim,, C. Lee,, G.H. Han,, M.S. Jeong,, T.O. Wehling,, C. Gies,: Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 15(10), 6841–6847 (2015)
https://doi.org/10.1021/acs.nanolett.5b02719
|
| 18 |
F. Wu,, F. Qu,, A.H. MacDonald,: Exciton band structure of monolayer MoS2. Phys. Rev. B 91(7), 075310 (2015)
https://doi.org/10.1103/PhysRevB.91.075310
|
| 19 |
T. Cheiwchanchamnangij,, W.R.L. Lambrecht,: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85(20), 205302 (2012)
https://doi.org/10.1103/PhysRevB.85.205302
|
| 20 |
A. Splendiani,, L. Sun,, Y. Zhang,, T. Li,, J. Kim,, C.-Y. Chim,, G. Galli,, F. Wang,: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)
https://doi.org/10.1021/nl903868w
|
| 21 |
G. Berghäuser,, E. Malic,: Analytical approach to excitonic properties of MoS2. Phys. Rev. B 89(12), 125309 (2014)
https://doi.org/10.1103/PhysRevB.89.125309
|
| 22 |
W. Zhou,, X. Zou,, S. Najmaei,, Z. Liu,, Y. Shi,, J. Kong,, J. Lou,, P.M. Ajayan,, B.I. Yakobson,, J.-C. Idrobo,: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013)
https://doi.org/10.1021/nl4007479
|
| 23 |
R. Addou,, L. Colombo,, R.M. Wallace,: Surface defects on natural MoS2. ACS Appl. Mater. Interfaces 7(22), 11921–11929 (2015)
https://doi.org/10.1021/acsami.5b01778
|
| 24 |
D.L. Duong,, S.J. Yun,, Y. Kim,, S.-G. Kim,, Y.H. Lee,: Long-range ferromagnetic ordering in vanadium-doped WSe2 semiconductor. Appl. Phys. Lett. 115(24), 242406 (2019)
https://doi.org/10.1063/1.5131566
|
| 25 |
S. Fan,, S.J. Yun,, W.J. Yu,, Y.H. Lee,: Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 7(3), 1902751 (2020)
https://doi.org/10.1002/advs.201902751
|
| 26 |
H. Duan,, P. Guo,, C. Wang,, H. Tan,, W. Hu,, W. Yan,, C. Ma,, L. Cai,, L. Song,, W. Zhang,, Z. Sun,, L. Wang,, W. Zhao,, Y. Yin,, X. Li,, S. Wei,: Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun.Commun. 10(1), 1584 (2019)
https://doi.org/10.1038/s41467-019-09531-0
|
| 27 |
J. Zhou,, J. Lin,, H. Sims,, C. Jiang,, C. Cong,, J.A. Brehm,, Z. Zhang,, L. Niu,, Y. Chen,, Y. Zhou,, Y. Wang,, F. Liu,, C. Zhu,, T. Yu,, K. Suenaga,, R. Mishra,, S.T. Pantelides,, Z.-G. Zhu,, W. Gao,, Z. Liu,, W. Zhou,: Synthesis of co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 32(29), 2003123 (2020)
https://doi.org/10.1002/adma.202003123
|
| 28 |
J. Zou,, Z. Cai,, Y. Lai,, J. Tan,, R. Zhang,, S. Feng,, G. Wang,, J. Lin,, B. Liu,, H.-M. Cheng,: Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15(4), 7340–7347 (2021)
https://doi.org/10.1021/acsnano.1c00596
|
| 29 |
L. Zhang,, Z. Wang,, J. Zhang,, B. Chen,, Z. Liang,, X. Quan,, Y. Dai,, J. Huang,, Y. Wang,, S.-J. Liang,, M. Long,, M. Si,, F. Miao,, Y. Peng,: Quasi-continuous tuning of carrier polarity in monolayered molybdenum dichalcogenides through substitutional vanadium doping. Adv. Funct. Mater.Funct. Mater. 32(46), 2204760 (2022)
https://doi.org/10.1002/adfm.202204760
|
| 30 |
J. Zhang,, Y. Zhu,, M. Tebyetekerwa,, D. Li,, D. Liu,, W. Lei,, L. Wang,, Y. Zhang,, Y. Lu,: Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors. ACS Appl. Nano Mater. 4(1), 769–777 (2020)
https://doi.org/10.1021/acsanm.0c03083
|
| 31 |
J. Zhou,, J. Lin,, X. Huang,, Y. Zhou,, Y. Chen,, J. Xia,, H. Wang,, Y. Xie,, H. Yu,, J. Lei,, D. Wu,, F. Liu,, Q. Fu,, Q. Zeng,, C.H. Hsu,, C. Yang,, L. Lu,, T. Yu,, Z. Shen,, H. Lin,, B.I. Yakobson,, Q. Liu,, K. Suenaga,, G. Liu,, Z. Liu,: A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018)
https://doi.org/10.1038/s41586-018-0008-3
|
| 32 |
S. Li,, S. Wang,, D.-M. Tang,, W. Zhao,, H. Xu,, L. Chu,, Y. Bando,, D. Golberg,, G. Eda,: Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015)
https://doi.org/10.1016/j.apmt.2015.09.001
|
| 33 |
D. Ganta,, S. Sinha,, R.T. Haasch,: 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 21(1), 19–27 (2014)
https://doi.org/10.1116/11.20140401
|
| 34 |
J.-K. Qin,, W.-Z. Shao,, C.-Y. Xu,, Y. Li,, D.-D. Ren,, X.-G. Song,, L. Zhen,: Chemical vapor deposition growth of degenerate p-Type Mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Interfaces 9(18), 15583–15591 (2017)
https://doi.org/10.1021/acsami.7b02101
|
| 35 |
J. Gao,, Y.D. Kim,, L. Liang,, J.C. Idrobo,, P. Chow,, J. Tan,, B. Li,, L. Li,, B.G. Sumpter,, T.-M. Lu,, V. Meunier,, J. Hone,, N. Koratkar,: Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28(44), 9735–9743 (2016)
https://doi.org/10.1002/adma.201601104
|
| 36 |
D. Gao,, Q. Xue,, X. Mao,, W. Wang,, Q. Xu,, D. Xue,: Ferromagnetism in ultrathin VS2 nanosheets. J. Mater. Chem. C 1(37), 5909–5916 (2013)
https://doi.org/10.1039/c3tc31233j
|
| 37 |
Y. Li,, J. Zhang,, G. Zheng,, Y. Sun,, S.S. Hong,, F. Xiong,, S. Wang,, H.R. Lee,, Y. Cui,: Lateral and vertical two-dimensional layered topological insulator heterostructures. ACS Nano 9(11), 10916–10921 (2015)
https://doi.org/10.1021/acsnano.5b04068
|
| 38 |
W. Fang,, H. Zhao,, Y. Xie,, J. Fang,, J. Xu,, Z. Chen,: Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 7(23), 13044–13052 (2015)
https://doi.org/10.1021/acsami.5b03124
|
| 39 |
S. Sasaki,, Y. Kobayashi,, Z. Liu,, K. Suenaga,, Y. Maniwa,, Y. Miyauchi,, Y. Miyata,: Growth and optical properties of Nbdoped WS2 monolayers. Appl. Phys. Express 9(7), 071201 (2016)
https://doi.org/10.7567/APEX.9.071201
|
| 40 |
T.H. Ly,, S.J. Yun,, Q.H. Thi,, J. Zhao,: Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11(7), 7534–7541 (2017)
https://doi.org/10.1021/acsnano.7b04287
|
| 41 |
D. Kaplan,, K. Mills,, J. Lee,, S. Torrel,, V. Swaminathan,: Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition. J. Appl. Phys. 119(21), 214301 (2016)
https://doi.org/10.1063/1.4948662
|
| 42 |
T. Yan,, X. Qiao,, X. Liu,, P. Tan,, X. Zhang,: Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 105(10), 101901 (2014)
https://doi.org/10.1063/1.4895471
|
| 43 |
K.K. Tiong,, T.S. Shou,, C.H. Ho,: Temperature dependence piezoreflectance study of the effect of doping MoS2 with rhenium. J. Phys. Condens. MatterCondens. Matter 12(14), 3441 (2000)
https://doi.org/10.1088/0953-8984/12/14/319
|
| 44 |
N. Perea-López,, Z. Lin,, N.R. Pradhan,, A. Iñiguez-Rábago,, A. Laura Elías,, A. McCreary,, J. Lou,, P.M. Ajayan,, H. Terrones,, L. Balicas,, M. Terrones,: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1(1), 011004 (2014)
https://doi.org/10.1088/2053-1583/1/1/011004
|
| 45 |
C. Nie,, L. Yu,, X. Wei,, J. Shen,, W. Lu,, W. Chen,, S. Feng,, H. Shi,: Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 28(27), (2017)
https://doi.org/10.1088/1361-6528/aa7473
|
| 46 |
Y.H. Zhou,, H.N. An,, C. Gao,, Z.Q. Zheng,, B. Wang,: UV–Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 237, 298–302 (2019)
https://doi.org/10.1016/j.matlet.2018.11.112
|
| 47 |
W. Zhang,, M.-H. Chiu,, C.-H. Chen,, W. Chen,, L.-J. Li,, A.T.S. Wee,: Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8(8), 8653–8661 (2014)
https://doi.org/10.1021/nn503521c
|
| 48 |
M. Sun,, Q. Fang,, D. Xie,, Y. Sun,, L. Qian,, J. Xu,, P. Xiao,, C. Teng,, W. Li,, T. Ren,, Y. Zhang,: Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11(6), 3233–3243 (2018)
https://doi.org/10.1007/s12274-017-1855-1
|
| 49 |
P. Vabbina,, N. Choudhary,, A.-A. Chowdhury,, R. Sinha,, M. Karabiyik,, S. Das,, W. Choi,, N. Pala,: Highly sensitive wide band-width photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky Junction. ACS Appl. Mater. Interfaces 7(28), 15206–15213 (2015)
https://doi.org/10.1021/acsami.5b00887
|
| 50 |
T. Yang,, B. Zheng,, Z. Wang,, T. Xu,, C. Pan,, J. Zou,, X. Zhang,, Z. Qi,, H. Liu,, Y. Feng,, W. Hu,, F. Miao,, L. Sun,, X. Duan,, A. Pan,: Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. Commun. 8(1), 1906 (2017)
https://doi.org/10.1038/s41467-017-02093-z
|
| 51 |
Z. Zou,, D. Li,, J. Liang,, X. Zhang,, H. Liu,, C. Zhu,, X. Yang,, L. Li,, B. Zheng,, X. Sun,, Z. Zeng,, J. Yi,, X. Zhuang,, X. Wang,, A. Pan,: Epitaxial synthesis of ultrathin beta-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 12(11), 6480–6488 (2020)
https://doi.org/10.1039/C9NR10387B
|
| 52 |
X. Sun,, Y. Liu,, J. Shi,, C. Si,, J. Du,, X. Liu,, C. Jiang,, S. Yang,: Controllable synthesis of 2H–1T’ MoxRe(1–x)S2 lateral hetero-structures and their tunable optoelectronic properties. Adv. Mater. 35(38), 2304171 (2023)
https://doi.org/10.1002/adma.202304171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|