Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (2) : 15    https://doi.org/10.1007/s12200-024-00120-8
Circularly polarized light emission and detection by chiral inorganic semiconductors
Zha Li1(), Wancai Li2, Dehui Li2, Wei Tang3,4, Huageng Liang5, Huaibing Song6, Chao Chen2, Liang Gao1(), Jiang Tang1,2
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
3. International Health Care Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
4. Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
5. Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
6. Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
 Download: PDF(3365 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chiral inorganic semiconductors with high dissymmetric factor are highly desirable, but it is generally difficult to induce chiral structure in inorganic semiconductors because of their structure rigidity and symmetry. In this study, we introduced chiral ZnO film as hard template to transfer chirality to CsPbBr3 film and PbS quantum dots (QDs) for circularly polarized light (CPL) emission and detection, respectively. The prepared CsPbBr3/ZnO thin film exhibited CPL emission at 520 nm and the PbS QDs/ZnO film realized CPL detection at 780 nm, featuring high dissymmetric factor up to around 0.4. The electron transition based mechanism is responsible for chirality transfer.

Keywords High dissymmetric factor      Circularly polarized light emission      Semiconductor      Hard template      Chirality     
Corresponding Author(s): Zha Li,Liang Gao   
Issue Date: 13 June 2024
 Cite this article:   
Zha Li,Wancai Li,Dehui Li, et al. Circularly polarized light emission and detection by chiral inorganic semiconductors[J]. Front. Optoelectron., 2024, 17(2): 15.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00120-8
https://academic.hep.com.cn/foe/EN/Y2024/V17/I2/15
1 S.W. Huo,, P.F. Duan,, T.F. Jiao,, Q.M. Peng,, M.H. Liu,: Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem. Int. Ed. 56(40), 12174–12178 (2017)
https://doi.org/10.1002/anie.201706308
2 F.Y. Song,, G. Wei,, X.X. Jiang,, F. Li,, C.J. Zhu,, Y.X. Cheng,: Chiral sensing for induced circularly polarized luminescence using an Eu(III)-containing polymer and D- or L-proline. Chem. Commun. (Camb.) 49(51), 5772–5774 (2013)
https://doi.org/10.1039/c3cc42323a
3 Y. Yang,, R.C. Da Costa,, M.J. Fuchter,, A.J. Campbell,: Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7(8), 634–638 (2013)
https://doi.org/10.1038/nphoton.2013.176
4 C.D. Stanciu,, F. Hansteen,, A.V. Kimel,, A. Kirilyuk,, A. Tsukamoto,, A. Itoh,, T. Rasing,: All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett 99(4), 047601 (2007)
https://doi.org/10.1103/PhysRevLett.99.047601
5 E.M. Sanchez-Carnerero,, A.R. Agarrabeitia,, F. Moreno,, B.L. Maroto,, G. Muller,, M.J. Ortiz,, S. de la Moya,: Circularly polarized luminescence from simple organic molecules. Chemistry 21(39), 13488–13500 (2015)
https://doi.org/10.1002/chem.201501178
6 W. Ma,, L. Xu,, A.F. de Moura,, X. Wu,, H. Kuang,, C. Xu,, N.A. Kotov,: Chiral inorganic nanostructures. Chem. Rev. 117(12), 8041–8093 (2017)
https://doi.org/10.1021/acs.chemrev.6b00755
7 T.H. Zhao,, J.L. Han,, X. Jin,, Y. Liu,, M.H. Liu,, P.F. Duan,: Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem. Int. Ed. 58(15), 4978–4982 (2019)
https://doi.org/10.1002/anie.201900052
8 A. Ben-Moshe,, S.G. Wolf,, M.B. Sadan,, L. Houben,, Z.Y. Fan,, A.O. Govorov,, G. Markovich,: G. Markovich,: Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5(1), 4302 (2014)
https://doi.org/10.1038/ncomms5302
9 C. Liu,, T. Li,, H. Abroshan,, Z.M. Li,, C. Zhang,, H.J. Kim,, G. Li,, R.C. Jin,: Chiral Ag-23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun 9(1), 744 (2018)
https://doi.org/10.1038/s41467-018-03136-9
10 K. Varga,, S. Tannir,, B.E. Haynie,, B.M. Leonard,, S.V. Dzyuba,, J. Kubelka,, M. Balaz,: CdSe quantum dots functionalized with chiral, thiol-free carboxylic acids: unraveling structural requirements for ligand-induced chirality. ACS Nano 11(10), 9846–9853 (2017)
https://doi.org/10.1021/acsnano.7b03555
11 Y.H. Shi,, P.F. Duan,, S.W. Huo,, Y.G. Li,, M.H. Liu,: Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater 30(12), 1705011 (2018)
https://doi.org/10.1002/adma.201705011
12 C.T. Wang,, J.Q. Chen,, P. Xu,, F. Yeung,, H.S. Kwok,, G.J. Li,: Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater 29(35), 1903155 (2019)
https://doi.org/10.1002/adfm.201903155
13 J.Q. Ma,, C. Fang,, C. Chen,, L. Jin,, J.Q. Wang,, S. Wang,, J. Tang,, D.H. Li,: Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13(3), 3659–3665 (2019)
https://doi.org/10.1021/acsnano.9b00302
14 H.Z. Zheng,, B. Ju,, X.J. Wang,, W.H. Wang,, M.J. Li,, Z.Y. Tang,, S.X.A. Zhang,, Y. Xu,: Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection. Adv. Opt. Mater 6(23), 1801246 (2018)
https://doi.org/10.1002/adom.201801246
15 Y.T. Sang,, J.L. Han,, T.H. Zhao,, P.F. Duan,, M.H. Liu,: Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv. Mater. 32(41), 1900110 (2020)
https://doi.org/10.1002/adma.201900110
16 Y.Y. Duan,, L. Han,, J.L. Zhang,, S. Asahina,, Z.H. Huang,, L. Shi,, B. Wang,, Y.Y. Cao,, Y. Yao,, L.G. Ma,, C. Wang,, R.K. Dukor,, L. Sun,, C. Jiang,, Z.Y. Tang,, L.A. Nafie,, S.N. Che,: Optically active nanostructured ZnO films. Angew. Chem. Int. Ed. 54(50), 15170–15175 (2015)
https://doi.org/10.1002/anie.201507502
17 Y.Y. Duan,, X. Liu,, L. Han,, S. Asahina,, D.D. Xu,, Y.Y. Cao,, Y. Yao,, S.N. Che,: Optically active chiral CuO “nanoflowers”. J. Am. Chem. Soc. 136(20), 7193–7196 (2014)
https://doi.org/10.1021/ja500197e
18 C.B. Gao,, S.A. Che,: Organically functionalized mesoporous silica by co-structure-directing route. Adv. Funct. Mater. 20(17), 2750–2768 (2010)
https://doi.org/10.1002/adfm.201000074
19 Y.Y. Duan,, S.N. Che,: Electron transition-based optical activity (ETOA) of achiral metal oxides derived from chiral mesoporous silica. Chemistry 19(32), 10468–10472 (2013)
https://doi.org/10.1002/chem.201301281
20 Q. Shen,, W.T. Mao,, L. Han,, Y.Y. Duan,, S.A. Che,: Chiral mesostructured SnO2 films with tunable optical activities. Opt. Mater. 94, 21–27 (2019)
https://doi.org/10.1016/j.optmat.2019.04.055
21 F. Zhang,, J. Ai,, K. Ding,, Y. Duan,, L. Han,, S. Che,: Synthesis of chiral mesostructured titanium dioxide films. Chem. Commun. (Camb.) 56(35), 4848–4851 (2020)
https://doi.org/10.1039/D0CC00669F
22 S.H. Liu,, L. Han,, Y.Y. Duan,, S. Asahina,, O. Terasaki,, Y.Y. Cao,, B. Liu,, L.G. Ma,, J.L. Zhang,, S.A. Che,: Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun 3(1), 1215 (2012)
https://doi.org/10.1038/ncomms2215
[1] Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses[J]. Front. Optoelectron., 2024, 17(2): 17-.
[2] Maryam Shaveisi, Peiman Aliparast. Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches[J]. Front. Optoelectron., 2023, 16(1): 5-.
[3] Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu. Dark current modeling of thick perovskite X-ray detectors[J]. Front. Optoelectron., 2022, 15(4): 43-.
[4] Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells[J]. Front. Optoelectron., 2022, 15(4): 46-.
[5] Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18-.
[6] Hei Chit Leo TSUI, Noel HEALY. Recent progress of semiconductor optoelectronic fibers[J]. Front. Optoelectron., 2021, 14(4): 383-398.
[7] Elchin ISGANDAROV, Xavier ROPAGNOL, Mangaljit SINGH, Tsuneyuki OZAKI. Intense terahertz generation from photoconductive antennas[J]. Front. Optoelectron., 2021, 14(1): 64-93.
[8] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[9] Chong ZHAO, Qixin WAN, Jiangnan DAI, Jun ZHANG, Feng WU, Shuai WANG, Hanling LONG, Jingwen CHEN, Cheng CHEN, Changqing CHEN. Diluted magnetic characteristics of Ni-doped AlN films via ion implantation[J]. Front. Optoelectron., 2017, 10(4): 363-369.
[10] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[11] Mingying TANG,Shaoshuai SUI,Yuede YANG,Jinlong XIAO,Yun DU,Yongzhen HUANG. Investigation of mode characteristics in rectangular microresonators for wide and continuous wavelength tuning[J]. Front. Optoelectron., 2016, 9(3): 412-419.
[12] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[13] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[14] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[15] Md. Jarez MIAH,Vladimir P. KALOSHA,Ricardo ROSALES,Dieter BIMBERG. Novel types of photonic band crystal high power and high brightness semiconductor lasers[J]. Front. Optoelectron., 2016, 9(2): 225-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed