Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (2) : 19    https://doi.org/10.1007/s12200-024-00122-6
Impact of device resistances in the performance of graphene-based terahertz photodetectors
O. Castelló1,2, Sofía M. López Baptista1, K. Watanabe3, T. Taniguchi4, E. Diez5, J. E. Velázquez-Pérez1,5, Y. M. Meziani1,5, J. M. Caridad1,2(), J. A. Delgado-Notario1,5()
1. Department of Applied Physics, University of Salamanca, 37008 Salamanca, Spain
2. Unidad de Excelencia en Luz y Materia Estructurada (LUMES), University of Salamanca, 37008 Salamanca, Spain
3. Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
4. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
5. Nanotechnology Group, USAL–Nanolab, University of Salamanca, 37008 Salamanca, Spain
 Download: PDF(5326 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, graphene field-effect-transistors (GFETs) have demonstrated an outstanding potential for terahertz (THz) photodetection due to their fast response and high-sensitivity. Such features are essential to enable emerging THz applications, including 6G wireless communications, quantum information, bioimaging and security. However, the overall performance of these photodetectors may be utterly compromised by the impact of internal resistances presented in the device, so-called access or parasitic resistances. In this work, we provide a detailed study of the influence of internal device resistances in the photoresponse of high-mobility dual-gate GFET detectors. Such dual-gate architectures allow us to fine tune (decrease) the internal resistance of the device by an order of magnitude and consequently demonstrate an improved responsivity and noise-equivalent-power values of the photodetector, respectively. Our results can be well understood by a series resistance model, as shown by the excellent agreement found between the experimental data and theoretical calculations. These findings are therefore relevant to understand and improve the overall performance of existing high-mobility graphene photodetectors.

Keywords Graphene      THz      Photodetector      Field-effect transistor      Plasmonic     
Corresponding Author(s): J. M. Caridad,J. A. Delgado-Notario   
Issue Date: 19 June 2024
 Cite this article:   
O. Castelló,Sofía M. López Baptista,K. Watanabe, et al. Impact of device resistances in the performance of graphene-based terahertz photodetectors[J]. Front. Optoelectron., 2024, 17(2): 19.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00122-6
https://academic.hep.com.cn/foe/EN/Y2024/V17/I2/19
1 B.M. Heffernan,, Y. Kawamoto,, K. Maekawa,, J. Greenberg,, R. Amin,, T. Hori,, T. Tanigawa,, T. Nagatsuma,, A. Rolland,: 60 Gbps real-time wireless communications at 300 GHz carrier using a Kerr microcomb-based source. APL Photonics. 8(6), 066106 (2023)
2 L. Yu,, L. Hao,, T. Meiqiong,, H. Jiaoqi,, L. Wei,, D. Jinying,, C. Xueping,, F. Weiling,, Z. Yang,: The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 9(17), 9354–9363 (2019)
https://doi.org/10.1039/C8RA10605C
3 Y. Wang,, W. Li,, H. Cheng,, Z. Liu,, Z. Cui,, J. Huang,, B. Xiong,, J. Yang,, H. Huang,, J. Wang,, Z. Fu,, Q. Huang,, Y. Lu,: Enhancement of spintronic terahertz emission enabled by increasing Hall angle and interfacial skew scattering. Communications Physics 6, 1–10 (2023)
https://doi.org/10.1038/s42005-023-01402-x
4 B. Aghoutane,, M. El Ghzaoui,, S.V. Kumari,, S. Das,, H. El Faylali,: A circularly polarized super wideband transparent optical nanoantenna for advanced THz communication applications. Opt. Quantum Electron. 55, 1–17 (2023)
5 Z. Sun,, C. Liang,, C. Chen,, X. Wang,, E. Zhou,, X. Bian,, Y. Yang,, R. You,, X. Zhao,, J. Zhao,, Z. You,: High-efficiency dynamic terahertz deflector utilizing a mechanically tunable metasurface. Research 6, 0274 (2023)
6 A. Leitenstorfer,, A.S. Moskalenko,, T. Kampfrath,, J. Kono,, E. Castro-Camus,, K. Peng,, N. Qureshi,, D. Turchinovich,, K. Tanaka,, A.G. Markelz,, M. Havenith,, C. Hough,, H.J. Joyce,, W.J. Padilla,, B. Zhou,, K.Y. Kim,, X.C. Zhang,, P.U. Jepsen,, S. Dhillon,, M. Vitiello,, E. Linfield,, A.G. Davies,, M.C. Hoffmann,, R. Lewis,, M. Tonouchi,, P. Klarskov,, T.S. Seifert,, Y.A. Gerasimenko,, D. Mihailovic,, R. Huber,, J.L. Boland,, O. Mitrofanov,, P. Dean,, B.N. Ellison,, P.G. Huggard,, S.P. Rea,, C. Walker,, D.T. Leisawitz,, J.R. Gao,, C. Li,, Q. Chen,, G. Valušis,, V.P. Wallace,, E. Pickwell-MacPherson,, X. Shang,, J. Hesler,, N. Ridler,, C.C. Renaud,, I. Kallfass,, T. Nagatsuma,, J.A. Zeitler,, D. Arnone,, M.B. Johnston,, J. Cunningham,: The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56(22), 223001 (2023)
7 M. Otteneder,, S. Hubmann,, X. Lu,, D.A. Kozlov,, L.E. Golub,, K. Watanabe,, T. Taniguchi,, D.K. Efetov,, S.D. Ganichev,: Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett. 20(10), 7152–7158 (2020)
https://doi.org/10.1021/acs.nanolett.0c02474
8 S. Castilla,, B. Terrés,, M. Autore,, L. Viti,, J. Li,, A.Y. Nikitin,, I. Vangelidis,, K. Watanabe,, T. Taniguchi,, E. Lidorikis,, M.S. Vitiello,, R. Hillenbrand,, K.J. Tielrooij,, F.H.L. Koppens,: Fast and sensitive terahertz detection using an antennaintegrated graphene pn junction. Nano Lett. 19(5), 2765–2773 (2019)
https://doi.org/10.1021/acs.nanolett.8b04171
9 Y. Xie,, F. Liang,, S. Chi,, D. Wang,, K. Zhong,, H. Yu,, H. Zhang,, Y. Chen,, J. Wang,: Defect engineering of MoS2 for roomtemperature terahertz photodetection. ACS Appl. Mater. Interfaces 12(6), 7351–7357 (2020)
10 L. Viti,, J. Hu,, D. Coquillat,, A. Politano,, W. Knap,, M.S. Vitiello,: Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep. 6(1), 20474 (2016)
11 Z. Hu,, L. Zhang,, A. Chakraborty,, G. D’Olimpio,, J. Fujii,, A. Ge,, Y. Zhou,, C. Liu,, A. Agarwal,, I. Vobornik,, D. Farias,, C.N. Kuo,, C.S. Lue,, A. Politano,, S.W. Wang,, W. Hu,, X. Chen,, W. Lu,, L. Wang,: Terahertz nonlinear hall rectifiers based on spinpolarized topological electronic states in 1T-CoTe2. Adv Mater. 35(10), 2209557 (2023)
12 S. Yang,, Z. Lin,, X. Wang,, J. Huang,, R. Yang,, Z. Chen,, Y. Jia,, Z. Zeng,, Z. Cao,, H. Zhu,, Y. Hu,, E. Li,, H. Chen,, T. Wang,, S. Deng,, X. Gui,: Stretchable, transparent, and ultra-broadband terahertz shielding thin films based on wrinkled MXene architectures. Nano-Micro Lett. 16(1), 165 (2024)
13 M. Dyakonov,, M. Shur,: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Dev. 43(3), 380–387 (1996)
https://doi.org/10.1109/16.485650
14 L. Wang,, L. Han,, W. Guo,, L. Zhang,, C. Yao,, Z. Chen,, Y. Chen,, C. Guo,, K. Zhang,, C.N. Kuo,, C.S. Lue,, A. Politano,, H. Xing,, M. Jiang,, X. Yu,, X. Chen,, W. Lu,: Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light Sci. Appl. 11(1), 53 (2022)
15 C. Yao,, M. Jiang,, D. Wang,, L. Zhang,, N. Zhang,, L. Wang,, X. Chen,: Hemispherical lens integrated room temperature ultrabroadband GaAs HEMT terahertz detector. Front. Phys. (Lausanne) 11, 1182059 (2023)
16 H.H. Nguyen Pham,, S. Hisatake,, O.V. Minin,, T. Nagatsuma,, I.V. Minin,: Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. APL Photonics 2(5), 056106 (2017)
17 A. Shabanov,, M. Moskotin,, V. Belosevich,, Y. Matyushkin,, M. Rybin,, G. Fedorov,, D. Svintsov,: Optimal asymmetry of transistor-based terahertz detectors. Appl. Phys. Lett. 119(16), 163505 (2021)
18 M. Sakowicz,, M.B. Lifshits,, O.A. Klimenko,, F. Schuster,, D. Coquillat,, F. Teppe,, W. Knap,: Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys. 110(5), 54512 (2011)
19 W. Stillman,, M.S. Shur,, D. Veksler,, S. Rumyantsev,, F. Guarin,: Device loading effects on nonresonant detection of terahertz radiation by silicon MOSFETs. Electron. Lett. 43(7), 422–423 (2007)
20 W. Stillman,, C. Donais,, S. Rumyantsev,, M. Shur,, D. Veksler,, C. Hobbs,, C. Smith,, G. Bersuker,, W. Taylor,, R. Jammy,: Silicon FinFETs as detectors of terahertz and sub-terahertz radiation. Int. J. High Speed Electron. Syst. 20(1), 27–42 (2012)
21 A. Rehman,, J.A. Delgado-Notario,, P. Sai,, D.B. But,, P. Prystawko,, Y. Ivonyak,, G. Cywinski,, W. Knap,, S. Rumyantsev,: Temperature dependence of current response to sub-terahertz radiation of AlGaN/GaN and graphene transistors. Appl. Phys. Lett. 121(21), 213503 (2022)
22 H.W. Hou,, Z. Liu,, J.H. Teng,, T. Palacios,, S.J. Chua,: High temperature terahertz detectors realized by a GaN high electron mobility transistor. Sci. Rep. 7, 1–6 (2017)
23 W. Knap,, M. Dyakonov,, D. Coquillat,, F. Teppe,, N. Dyakonova,, J. Łusakowski,, K. Karpierz,, M. Sakowicz,, G. Valusis,, D. Seliuta,, I. Kasalynas,, A. El Fatimy,, Y.M. Meziani,, T. Otsuji,: Field effect transistors for terahertz detection: physics and first imaging applications. Int. J. Infrared Millim. Terahertz Waves 30, 1319–1337 (2009)
24 J.A. Delgado-Notario,, W. Knap,, V. Clericò,, J. Salvador-Sánchez,, J. Calvo-Gallego,, T. Taniguchi,, K. Watanabe,, T. Otsuji,, V.V. Popov,, D.V. Fateev,, E. Diez,, J.E. Velázquez-Pérez,, Y.M. Meziani,: Enhanced terahertz detection of multigate graphene nanostructures. Nanophotonics. 11(3), 519–529 (2022)
https://doi.org/10.1515/nanoph-2021-0573
25 L. Viti,, D. Coquillat,, A. Politano,, K.A. Kokh,, Z.S. Aliev,, M.B. Babanly,, O.E. Tereshchenko,, W. Knap,, E.V. Chulkov,, M.S. Vitiello,: Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett. 16(1), 80–87 (2016)
https://doi.org/10.1021/acs.nanolett.5b02901
26 J.A. Delgado-Notario,, V. Clericò,, E. Diez,, J.E. Velázquez-Pérez,, T. Taniguchi,, K. Watanabe,, T. Otsuji,, Y.M. Meziani,: Asymmetric dual-grating gates graphene FET for detection of terahertz radiations. APL Photonics. 5(6), 066102 (2020)
27 D. Vaquero,, V. Clericò,, M. Schmitz,, J.A. Delgado-Notario,, A. Martín-Ramos,, J. Salvador-Sánchez,, C.S.A. Müller,, K. Rubi,, K. Watanabe,, T. Taniguchi,, B. Beschoten,, C. Stampfer,, E. Diez,, M.I. Katsnelson,, U. Zeitler,, S. Wiedmann,, S. Pezzini,: Phonon-mediated room-temperature quantum Hall transport in graphene. Nat. Commun. 14(1), 318 (2023)
28 D.A. Bandurin,, I. Gayduchenko,, Y. Cao,, M. Moskotin,, A. Principi,, I.V. Grigorieva,, G. Goltsman,, G. Fedorov,, D. Svintsov,: Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors. Appl. Phys. Lett. 112(14), 141101 (2018)
29 D.A. Bandurin,, D. Svintsov,, I. Gayduchenko,, S.G. Xu,, A. Principi,, M. Moskotin,, I. Tretyakov,, D. Yagodkin,, S. Zhukov,, T. Taniguchi,, K. Watanabe,, I.V. Grigorieva,, M. Polini,, G.N. Goltsman,, A.K. Geim,, G. Fedorov,: Resonant terahertz detection using graphene plasmons. Nat. Commun. 9(1), 5392 (2018)
30 L. Vicarelli,, M.S. Vitiello,, D. Coquillat,, A. Lombardo,, A.C. Ferrari,, W. Knap,, M. Polini,, V. Pellegrini,, A. Tredicucci,: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012)
31 A. Zak,, M.A. Andersson,, M. Bauer,, J. Matukas,, A. Lisauskas,, H.G. Roskos,, J. Stake,: Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett. 14(10), 5834–5838 (2014)
https://doi.org/10.1021/nl5027309
32 J.M. Caridad,, Ó. Castelló,, S.M. López Baptista,, T. Taniguchi,, K. Watanabe,, H.G. Roskos,, J.A. Delgado-Notario,: Room-temperature plasmon-assisted resonant THz detection in single-layer graphene transistors. Nano Lett. 24(3), 935–942 (2024)
https://doi.org/10.1021/acs.nanolett.3c04300
33 L. Wang,, I. Meric,, P.Y. Huang,, Q. Gao,, Y. Gao,, H. Tran,, T. Taniguchi,, K. Watanabe,, L.M. Campos,, D.A. Muller,, J. Guo,, P. Kim,, J. Hone,, K.L. Shepard,, C.R. Dean,: One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013)
https://doi.org/10.1126/science.1244358
34 S. Kim,, J. Nah,, I. Jo,, D. Shahrjerdi,, L. Colombo,, Z. Yao,, E. Tutuc,, S.K. Banerjee,: Realization of a high mobility dualgated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)
35 S. Boubanga-Tombet,, W. Knap,, D. Yadav,, A. Satou,, D.B. But,, V.V. Popov,, I.V. Gorbenko,, V. Kachorovskii,, T. Otsuji,: Room-temperature amplification of terahertz radiation by grating-gate graphene structures. Phys. Rev. X 10(3), 31004 (2020)
36 A. Soltani,, F. Kuschewski,, M. Bonmann,, A. Generalov,, A. Vorobiev,, F. Ludwig,, M.M. Wiecha,, D. Čibiraitė,, F. Walla,, S. Winnerl,, S.C. Kehr,, L.M. Eng,, J. Stake,, H.G. Roskos,: Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light: Science & Applications 9, 1–7 (2020)
https://doi.org/10.1038/s41377-020-0321-0
37 A.V. Muraviev,, S.L. Rumyantsev,, G. Liu,, A.A. Balandin,, W. Knap,, M.S. Shur,: Plasmonic and bolometric terahertz detection by graphene field-effect transistor. Appl. Phys. Lett. 103(18), 181114 (2013)
38 K. Tamura,, C. Tang,, D. Ogiura,, K. Suwa,, H. Fukidome,, Y. Takida,, H. Minamide,, T. Suemitsu,, T. Otsuji,, A. Satou,: Fast and sensitive terahertz detection with a current-driven epitaxial-graphene asymmetric dual-grating-gate field-effect transistor structure. APL Photonics. 7(12), 126101 (2022)
39 S. Ullah,, Q. Shi,, J. Zhou,, X. Yang,, H.Q. Ta,, M. Hasan,, N. Mahmood Ahmad,, L. Fu,, A. Bachmatiuk,, M.H. Rümmeli,, S. Ullah,, Q. Shi,, J. Zhou,, X. Yang,, A. Bachmatiuk,, M.H. Rümmeli,, H.Q. Ta,, M. Hasan,, N.M. Ahmad,, L. Fu,: Advances and trends in chemically doped graphene. Adv. Mater. Interfaces. 7(24), 2000999 (2020)
40 A. Rogalski,: Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics 11(2), 314–379 (2019)
41 J. Yang,, H. Qin,, K. Zhang,: Emerging terahertz photodetectors based on two-dimensional materials. Opt. Commun. 406, 36–43 (2018)
[1] Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses[J]. Front. Optoelectron., 2024, 17(2): 17-.
[2] Zhixiang Huang, Weipeng Wu, Eric Herrmann, Ke Ma, Zizwe A. Chase, Thomas A. Searles, M. Benjamin Jungfleisch, Xi Wang. MEMS-actuated terahertz metamaterials driven by phase-transition materials[J]. Front. Optoelectron., 2024, 17(2): 13-.
[3] Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection[J]. Front. Optoelectron., 2024, 17(2): 12-.
[4] Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao. All laser direct writing process for temperature sensor based on graphene and silver[J]. Front. Optoelectron., 2024, 17(1): 5-.
[5] Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu. Enhancement of silicon sub-bandgap photodetection by helium-ion implantation[J]. Front. Optoelectron., 2023, 16(4): 41-.
[6] Zixiong Li, Mingyu Li, Xinyi Hou, Lei Du, Lin Xiao, Tianshu Wang, Wanzhuo Ma. Generation of mode-locked states of conventional solitons and bright-dark solitons in graphene mode-locked fiber laser[J]. Front. Optoelectron., 2023, 16(2): 12-.
[7] Masumeh Sarkhoush, Hassan Rasooli Saghai, Hadi Soofi. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications[J]. Front. Optoelectron., 2022, 15(4): 42-.
[8] Fu Qiu, Yutian Lei, Zhiwen Jin. Copper-based metal halides for X-ray and photodetection[J]. Front. Optoelectron., 2022, 15(4): 47-.
[9] Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18-.
[10] Peiyan Li, Shaojie Liu, Xinhou Chen, Chunyan Geng, Xiaojun Wu. Spintronic terahertz emission with manipulated polarization (STEMP)[J]. Front. Optoelectron., 2022, 15(1): 12-.
[11] Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide[J]. Front. Optoelectron., 2021, 14(4): 399-406.
[12] Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Front. Optoelectron., 2021, 14(4): 445-449.
[13] C. GANDHI, P. RAMESH BABU, K. SENTHILNATHAN. Ultra-thin polarization independent broadband terahertz metamaterial absorber[J]. Front. Optoelectron., 2021, 14(3): 288-297.
[14] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[15] Yu BI, Lingling HUANG, Xiaowei LI, Yongtian WANG. Magnetically controllable metasurface and its application[J]. Front. Optoelectron., 2021, 14(2): 154-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed