Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2024, Vol. 17 Issue (4) : 32    https://doi.org/10.1007/s12200-024-00136-0
Quantitative modeling of perovskite-based direct X-ray flat panel detectors
Zihao Song1, Gaozhu Wang1, Jincong Pang1(), Zhiping Zheng3, Ling Xu1, Ying Zhou1, Guangda Niu1,2, Jiang Tang1,2,3()
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Optical Valley Laboratory, Wuhan 430074, China
3. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1542 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 103 µCGy-1·cm-2. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 µCGy-1air·cm-2, the requirements on dark current density ranges from 10 to 100 nA·cm-2 and the fluctuation of current density should fall in 0.21 to 1.37 nA·cm-2.

Keywords DQE      X-ray      Detector      Perovskite     
Corresponding Author(s): Jincong Pang,Jiang Tang   
Issue Date: 14 October 2024
 Cite this article:   
Zihao Song,Gaozhu Wang,Jincong Pang, et al. Quantitative modeling of perovskite-based direct X-ray flat panel detectors[J]. Front. Optoelectron., 2024, 17(4): 32.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-024-00136-0
https://academic.hep.com.cn/foe/EN/Y2024/V17/I4/32
1 Y.C. Kim,, K.H. Kim,, D.Y. Son,, D.N. Jeong,, J.Y. Seo,, Y.S. Choi,, I.T. Han,, S.Y. Lee,, N.G. Park,: Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017)
https://doi.org/10.1038/nature24032
2 Medical electrical equipment – characteristics of digital X-ray imaging devices – part 1: Determination of the detective quantum efficiency. (2003)
3 A.C. Konstantinidis,, M.B. Szafraniec,, R.D. Speller,, A. Olivo,: The Dexela 2923 CMOS X-ray detector: a flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nucl. Instrum. Methods Res. A. 689, 12–21 (2012)
https://doi.org/10.1016/j.nima.2012.06.024
4 S. Deumel,, A. van Breemen,, G. Gelinck,, B. Peeters,, J. Maas,, R. Verbeek,, S. Shanmugam,, H. Akkerman,, E. Meulenkamp,, J.E. Huerdler,, M. Acharya,, M. García-Batlle,, O. Almora,, A. Guerrero,, G. Garcia-Belmonte,, W. Heiss,, O. Schmidt,, S.F. Tedde,: High-sensitivity high-resolution X-ray imaging with softsintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021)
https://doi.org/10.1038/s41928-021-00644-3
5 S.O. Kasap,, K.V. Koughia,, B. Fogal,, G. Belev,, R.E. Johanson,: The influence of deposition conditions and alloying on the electronic properties of amorphous selenium. Semiconductors 37(7), 789–794 (2003)
https://doi.org/10.1134/1.1592851
6 D. Greiffenberg,, A. Fauler,, A. Zwerger,, M. Fiederle,: Energy resolution and transport properties of CdTe-timepix-assemblies. J. Instrum.Instrum. 6(1), 01058(2011)
https://doi.org/10.1088/1748-0221/6/01/C01058
7 J. Pang,, S. Zhao,, X. Du,, H. Wu,, G. Niu,, J. Tang,: Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11(1), 105(2022)
https://doi.org/10.1038/s41377-022-00791-y
8 J. Pang,, H. Wu,, H. Li,, T. Jin,, J. Tang,, G. Niu,: Reconfigurable perovskite X-ray detector for intelligent imaging. Nat. Commun. Commun. 15(1), 1769(2024)
https://doi.org/10.1038/s41467-024-46184-0
9 Y. He,, I. Hadar,, M.G. Kanatzidis,: Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16(1), 14–26 (2022)
https://doi.org/10.1038/s41566-021-00909-5
10 Y. Liu,, Y. Zhang,, X. Zhu,, J. Feng,, I. Spanopoulos,, W. Ke,, Y. He,, X. Ren,, Z. Yang,, F. Xiao,, K. Zhao,, M. Kanatzidis,, S.F. Liu,: Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Adv. Mater. 33(8), 2006010(2021)
https://doi.org/10.1002/adma.202006010
11 P. Jin,, Y. Tang,, D. Li,, Y. Wang,, P. Ran,, C. Zhou,, Y. Yuan,, W. Zhu,, T. Liu,, K. Liang,, C. Kuang,, X. Liu,, B. Zhu,, Y.M. Yang,: Realizing nearly- zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by darkcurrent- shunting strategy. Nat. Commun.Commun. 14(1), 626(2023)
https://doi.org/10.1038/s41467-023-36313-6
12 Z. Song,, X. Du,, X. He,, H. Wang,, Z. Liu,, H. Wu,, H. Luo,, L. Jin,, L. Xu,, Z. Zheng,, G. Niu,, J. Tang,: Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector. Nat. Commun.Commun. 14(1), 6865(2023)
https://doi.org/10.1038/s41467-023-42616-5
[1] Jinzhuo Xu, Yinghui Wu, Shuting Fan, Xudong Liu, Zhen Yin, Youpeng Yang, Renheng Wang, Zhengfang Qian, Yiwen Sun. Real-time detection of aging status of methylammonium lead iodide perovskite thin films by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2024, 17(3): 24-.
[2] O. Castelló, Sofía M. López Baptista, K. Watanabe, T. Taniguchi, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani, J. M. Caridad, J. A. Delgado-Notario. Impact of device resistances in the performance of graphene-based terahertz photodetectors[J]. Front. Optoelectron., 2024, 17(2): 19-.
[3] Junjun Xue, Jiaming Tong, Zhujun Gao, Zhouyu Chen, Haoyu Fang, Saisai Wang, Ting Zhi, Jin Wang. Monolayer graphene/GaN heterostructure photodetector with UV-IR dual-wavelength photoresponses[J]. Front. Optoelectron., 2024, 17(2): 17-.
[4] Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du. White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions[J]. Front. Optoelectron., 2024, 17(1): 6-.
[5] Zhao Wang, Xiaolei Wen, Kai Zou, Yun Meng, Jinwei Zeng, Jian Wang, Huan Hu, Xiaolong Hu. Enhancement of silicon sub-bandgap photodetection by helium-ion implantation[J]. Front. Optoelectron., 2023, 16(4): 41-.
[6] Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu. Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells[J]. Front. Optoelectron., 2023, 16(4): 47-.
[7] Max Karlsson, Jiajun Qin, Kaifeng Niu, Xiyu Luo, Johanna Rosen, Jonas Björk, Lian Duan, Weidong Xu, Feng Gao. Role of chloride on the instability of blue emitting mixed-halide perovskites[J]. Front. Optoelectron., 2023, 16(4): 37-.
[8] Cheng Wang, Yaoguang Rong, Ti Wang. Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites[J]. Front. Optoelectron., 2023, 16(3): 25-.
[9] Maryam Shaveisi, Peiman Aliparast. Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches[J]. Front. Optoelectron., 2023, 16(1): 5-.
[10] Shan Zhao, Xinyuan Du, Jincong Pang, Haodi Wu, Zihao Song, Zhiping Zheng, Ling Xu, Jiang Tang, Guangda Niu. Dark current modeling of thick perovskite X-ray detectors[J]. Front. Optoelectron., 2022, 15(4): 43-.
[11] Fu Qiu, Yutian Lei, Zhiwen Jin. Copper-based metal halides for X-ray and photodetection[J]. Front. Optoelectron., 2022, 15(4): 47-.
[12] Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells[J]. Front. Optoelectron., 2022, 15(4): 46-.
[13] Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Front. Optoelectron., 2022, 15(3): 39-.
[14] Yuan Liu, Xu Lian, Zhangdi Xie, Jinlin Yang, Yishui Ding, Wei Chen. Probing fluorination promoted sodiophilic sites with model systems of F16CuPc and CuPc[J]. Front. Optoelectron., 2022, 15(2): 19-.
[15] Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed