. College of Physics Science and Technology, Hebei University, Baoding 071002, China . State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China . School of Physics, Beijing Institute of Technology, Beijing 100081, China
Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) ‘kaleidoscope’ with rich diversity of structural configurations in dielectric barrier discharge. Multi-freedom control of the PPCs, including the symmetry, dielectric constant, crystal orientation, lattice constant, topological state, and structures of scattering elements, has been realized. Four types of lattice reconfigurations are demonstrated, including transitions from periodic to periodic, disordered to ordered, non-topological to topological, and striped to honeycomb Moiré lattices. Furthermore, alterations in photonic band structures corresponding to the reconstruction of various PPCs have been investigated. Our system presents a promising platform for generating a PPC ‘kaleidoscope’, offering benefits such as reduced equipment requirements, low cost, rapid response, and enhanced flexibility. This development opens up new opportunities for both fundamental and applied research.
Corresponding Author(s):
Weili Fan,Fucheng Liu,Xiaoyong Hu
Issue Date: 19 November 2024
Cite this article:
Jing Wang,Shuang Liu,Weili Fan, et al. Plasma photonic crystal ‘kaleidoscope’ with flexible control of topology and electromagnetism[J]. Front. Optoelectron.,
2024, 17(4): 34.
E. Cubukcu,, K. Aydin,, E. Ozbay,, S. Foteinopoulou,, C.M. Soukoulis,: Negative refraction by photonic crystals. Nature 423(6940), 604–605 (2003) https://doi.org/10.1038/423604b
J. Arlandis,, E. Centeno,, R. Polles,, A. Moreau,, J. Campos,, O. Gauthier-Lafaye,, A. Monmayrant,: Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals. Phys. Rev. Lett. 108(3), 037401 (2012) https://doi.org/10.1103/PhysRevLett.108.037401
X. Huang,, Y. Lai,, Z.H. Hang,, H. Zheng,, C.T. Chan,: Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10(8), 582–586 (2011). https://doi.org/10.1038/nmat3030
6
S. Mukherjee,, A. Spracklen,, D. Choudhury,, N. Goldman,, P. Öhberg,, E. Andersson,, R.R. Thomson,: Observation of a localized flat-band state in a photonic lieb lattice. Phys. Rev. Lett. 114(24), 245504 (2015) https://doi.org/10.1103/PhysRevLett.114.245504
7
C. Grillet,, C. Monat,, C.L. Smith,, M.W. Lee,, S. Tomljenovic-Hanic,, C. Karnutsch,, B.J. Eggleton,: Reconfigurable photonic crystal circuits. Laser Photon. Rev. 4(2), 192–204 (2010) https://doi.org/10.1002/lpor.200810072
8
X. Cheng,, C. Jouvaud,, X. Ni,, S.H. Mousavi,, A.Z. Genack,, A.B. Khanikaev,: Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15(5), 542–548 (2016) https://doi.org/10.1038/nmat4573
9
T. Li,, G. Liu,, H. Kong,, G. Yang,, G. Wei,, X. Zhou,: Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 475, 214909 (2023) https://doi.org/10.1016/j.ccr.2022.214909
10
C. Fenzl,, T. Hirsch,, O.S. Wolfbeis,: Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014) https://doi.org/10.1002/anie.201307828
11
A.C. Arsenault,, D.P. Puzzo,, I. Manners,, G.A. Ozin,: Photonic-crystal full-colour displays. Nat. Photonics 1(8), 468–472 (2007) https://doi.org/10.1038/nphoton.2007.140
12
S. Ye,, Q. Fu,, J. Ge,: Invisible photonic prints shown by deformation. Adv. Func. Mater. 24(41), 6430–6438 (2014) https://doi.org/10.1002/adfm.201401562
13
H. Li,, J. Wang,, H. Lin,, L. Xu,, W. Xu,, R. Wang,, Y. Song,, D. Zhu,: Amplification of fluorescent contrast by photonic crystals in optical storage. Adv. Mater. 11(22), 1237–1241 (2010) https://doi.org/10.1002/adma.200903105
14
G. Liao,, S. Chen,, X. Quan,, H. Chen,, Y. Zhang,: Photonic crystal coupled tio2/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ. Sci. Technol. 44(9), 3481–3485 (2010) https://doi.org/10.1021/es903833f
15
S. Colodrero,, A. Forneli,, C. López-López,, L. Pellejà,, H. Míguez,, E. Palomares,: Efficient transparent thin dye solar cells based on highly porous 1d photonic crystals. Adv. Func. Mater. 22(6), 1303–1310 (2012) https://doi.org/10.1002/adfm.201102159
16
Y. Fang,, Y. Ni,, S.Y. Leo,, C. Taylor,, V. Basile,, P. Jiang,: Reconfigurable photonic crystals enabled by pressure-responsive shapememory polymers. Nat. Commun. 6(1), 7416 (2015) https://doi.org/10.1038/ncomms8416
17
J. Kitagawa,, M. Kodama,, S. Koya,, Y. Nishifuji,, D. Armand,, Y. Kadoya,: Thz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands. Opt. Express 20(16), 17271–17280 (2012) https://doi.org/10.1364/OE.20.017271
18
C. Pouya,, M. Kolle,, J. Aizenberg,, K. Bertoldi,, J.C. Weaver,, P. Vukusic,: Characterization of a mechanically tunable gyroid photonic crystal inspired by the butterfly parides sesostris. Adv. Opt. Mater. (2015) https://doi.org/10.1002/adom.201500436
19
G. Wu,, Y. Cho,, I.-S. Choi,, D. Ge,, J. Li,, H.N. Han,, T. Lubensky,, S. Yang,: Directing the deformation paths of soft metamaterials with prescribed asymmetric units. Adv. Mater. 27(17), 2747–2752 (2015) https://doi.org/10.1002/adma.201500716
20
D. Yang,, H. Tian,, Y. Ji,: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 19(21), 20023–20034 (2011) https://doi.org/10.1364/OE.19.020023
N.W. Speijcken,, M.A. Dündar,, A. Casas Bedoya,, C. Monat,, C. Grillet,, P. Domachuk,, R. Nötzel,, B.J. Eggleton,, R.W. Heijden,: In situ optofluidic control of reconfigurable photonic crystal cavities. Appl. Phys. Lett. 100(26) (2012) https://doi.org/10.1063/1.4732093
23
H.M. Chong,, R. De La Rue,: Tuning of photonic crystal wave-guide microcavity by thermooptic effect. IEEE Photon. Technol. Lett. 16(6), 1528–1530 (2004) https://doi.org/10.1109/LPT.2004.826781
24
Y. Zhang,, Z. Li,, S. Xu,, Y. Xiang,: Tunable and reconfigurable higher-order topological insulators in photonic crystals with phase change materials. Ann. Phys. 534(1), 2100293 (2022) https://doi.org/10.1002/andp.202100293
25
M. Honda,, T. Seki,, Y. Takeoka,: Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 21(18), 1801–1804 (2009) https://doi.org/10.1002/adma.200801258
J.K. Chin,, D. Miller,, Y. Liu,, C. Stan,, W. Setiawan,, C. Sanner,, K. Xu,, W. Ketterle,: Evidence for superfluidity of ultracold fermions in an optical lattice. Nature 443(7114), 961–964 (2006) https://doi.org/10.1038/nature05224
28
S. Peil,, J.V. Porto,, B.L. Tolra,, J. Obrecht,, B. King,, M. Subbotin,, S. Rolston,, W.D. Phillips,: Patterned loading of a bose-einstein condensate into an optical lattice. Phys. Rev. A 67(5), 051603 (2003) https://doi.org/10.1103/PhysRevA.67.051603
29
Y. Zhao,, F. Liang,, X. Wang,, D. Zhao,, B.Z. Wang,: Tunable and programmable topological valley transport in photonic crystals with liquid crystals. J. Phys. D Appl. Phys. 55(15), 155102 (2022) https://doi.org/10.1088/1361-6463/ac485d
30
W. Hu,, J. Hu,, S. Wen,, Y. Xiang,: Dynamically reconfigurable topological states in photonic crystals with liquid crystals. Opt. Lett. 46(11), 2589–2592 (2021) https://doi.org/10.1364/OL.427559
I.C. Khoo,: Cholesteric and blue-phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations. Liquid Cryst. Rev. 6(1), 53–77 (2018) https://doi.org/10.1080/21680396.2018.1509387
35
Y. Gao,, D. Song,, S. Chu,, Z. Chen,: Artificial graphene and related photonic lattices generated with a simple method. IEEE Photonics J. 6(6), 1–6 (2014) https://doi.org/10.1109/JPHOT.2014.2363436
36
D. Song,, V. Paltoglou,, S. Liu,, Y. Zhu,, D. Gallardo,, L. Tang,, J. Xu,, M. Ablowitz,, N.K. Efremidis,, Z. Chen,: Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun. 6(1), 6272 (2015) https://doi.org/10.1038/ncomms7272
37
B. Wang,, J. Rodríguez,, M.A. Cappelli,: 3d woodpile structure tunable plasma photonic crystal. Plasma Sources Sci. Technol. 28(2), 01–02 (2019) https://doi.org/10.1088/1361-6595/ab0011
38
W. Zhang,, H. Wang,, X. Zhao,, W. Lan,: Bandgap-tunable device realized by ternary plasma photonic crystals arrays. Phys. Plasmas. 27(6) (2020) https://doi.org/10.1063/1.5134560
39
J. Li,, Y. Wang,, Z. Zhou,, J. Yao,, J. Liu,, Z. Lan,, C. Yuan,: Experimental observations of communication in blackout, topological waveguiding and dirac zero-index property in plasma sheath. Nanophotonics 12(10), 1847–1856 (2023) https://doi.org/10.1515/nanoph-2022-0800
40
J. Li,, J. Yao,, C. Yuan,, Y. Wang,, Z. Zhou,, J. Zhang,: Tunable transmission near dirac-like point in the designed plasma photonic crystal. Phys. Plasmas. 29(3) (2022) https://doi.org/10.1063/5.0079293
41
Z.J. Liu,, W.C. Wang,, L. Zhang,, S. Wang,, D.Z. Yang,, S. Zhang,, K. Tang,: Electrical and optical characteristics of diffuse nanosecond pulsed discharge plasma using a needle-array electrode in atmospheric air. J. Appl. Phys. 115(20) (2014) https://doi.org/10.1063/1.4880175
42
K. Takaki,, M. Hosokawa,, T. Sasaki,, S. Mukaigawa,, T. Fujiwara,: Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode. Appl. Phys. Lett. 86(15) (2005) https://doi.org/10.1063/1.1905801
43
S. Monchocé,, S. Kahaly,, A. Leblanc,, L. Videau,, P. Combis,, F. Réau,, D. Garzella,, P. D’Oliveira,, P. Martin,, F. Quéré,: Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett. 112(14), 145008 (2014) https://doi.org/10.1103/PhysRevLett.112.145008
44
L.L. Yu,, Y. Zhao,, L.J. Qian,, M. Chen,, S.M. Weng,, Z.M. Sheng,, D. Jaroszynski,, W. Mori,, J. Zhang,: Plasma optical modulators for intense lasers. Nat. Commun. 7(1), 11893 (2016) https://doi.org/10.1038/ncomms11893
45
H. Tan,, C. Jin,, L. Zhuge,, X. Wu,: Simulation on the photonic bandgap of 1-d plasma photonic crystals. IEEE Trans. Plasma Sci. 46(3), 539–544 (2018) https://doi.org/10.1109/TPS.2018.2795613
46
W. Shuqun,, C. Yuxiu,, L. Minge,, Y. Lu,, C. Zhang,, L. Shaobin,: Numerical study on the modulation of thz wave propagation by collisional microplasma photonic crystal. Plasma Sci. Technol 22(11), 115402 (2020) https://doi.org/10.1088/2058-6272/abb077
47
Y. Kang,, H. Zhong,, M.R. Belić,, Y. Tian,, K. Jin,, Y. Zhang,, F. Li,, Y. Zhang,: Conical diffraction from approximate dirac cone states in a superhoneycomb lattice. Ann. Phys. 531(11), 1900295 (2019) https://doi.org/10.1002/andp.201900295
48
Y. Zhang,, Y. Su,, L. He,: Quantum interferences of pseudospinmediated atomic-scale vortices in monolayer graphene. Nano Lett. 21(6), 2526–2531 (2021) https://doi.org/10.1021/acs.nanolett.0c05066
49
J. Topolancik,, R. Ilic,, F. Vollmer,: Experimental observation of strong photon localization in disordered photonic crystal waveguides. arXiv preprint arXiv: 0706.3040 (2007) https://doi.org/10.1103/PhysRevLett.99.253901
S. Popoff,, G. Lerosey,, M. Fink,, A.C. Boccara,, S. Gigan,: Image transmission through an opaque material. Nat. Commun. 1(1), 81 (2010) https://doi.org/10.1038/ncomms1078
53
K. Vynck,, M. Burresi,, F. Riboli,, D.S. Wiersma,: Photon management in two-dimensional disordered media. Nat. Mater. 11(12), 1017–1022 (2012) https://doi.org/10.1038/nmat3442
B. Lou,, N. Zhao,, M. Minkov,, C. Guo,, M. Orenstein,, S. Fan,: Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126(13), 136101 (2021) https://doi.org/10.1103/PhysRevLett.126.136101
56
P. Wang,, Y. Zheng,, X. Chen,, C. Huang,, Y.V. Kartashov,, L. Torner,, V.V. Konotop,, F. Ye,: Localization and delocalization of light in photonic moiré lattices. Nature 577(7788), 42–46 (2020) https://doi.org/10.1038/s41586-019-1851-6
57
H. Gómez-Urrea,, M. Ospina-Medina,, J. Correa-Abad,, M. Mora-Ramos,, F. Caro-Lopera,: Tunable band structure in 2d bravais- moiré photonic crystal lattices. Opt. Commun. 459, 125081 (2020) https://doi.org/10.1016/j.optcom.2019.125081
58
M. Oudich,, G. Su,, Y. Deng,, W. Benalcazar,, R. Huang,, N.J. Gerard,, M. Lu,, P. Zhan,, Y. Jing,: Photonic analog of bilayer graphene. Phys. Rev. B 103(21), 214311 (2021) https://doi.org/10.1103/PhysRevB.103.214311
59
F.D.M. Haldane,, S. Raghu,: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. arXiv preprint cond-mat/0503588 (2005)
60
Z. Wang,, Y. Chong,, J.D. Joannopoulos,, M. Soljačić,: Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100(1), 013905 (2008) https://doi.org/10.1103/PhysRevLett.100.013905
61
Z. Wang,, Y. Chong,, J.D. Joannopoulos,, M. Soljačić,: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009) https://doi.org/10.1038/nature08293
62
D. Leykam,, S. Mittal,, M. Hafezi,, Y.D. Chong,: Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett. 121(2), 023901 (2018) https://doi.org/10.1103/PhysRevLett.121.023901
63
T. Ma,, A.B. Khanikaev,, S.H. Mousavi,, G. Shvets,: Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114(12), 127401 (2015) https://doi.org/10.1103/PhysRevLett.114.127401
64
L. Jianfei,, Z. Chen,, Y. Jingfeng,, Y. Chengxun,, W. Ying,, Z. Zhongxiang,, J. Zhang,, A.A. Kudryavtsev,: Valley-dependent topological edge states in plasma photonic crystals. Plasma Sci. Technol 25(3), 035001 (2023) https://doi.org/10.1088/2058-6272/ac9347
65
C.A. Rosiek,, G. Arregui,, A. Vladimirova,, M. Albrechtsen,, B. Vosoughi Lahijani,, R.E. Christiansen,, S. Stobbe,: Observation of strong backscattering in valley-hall photonic topological interface modes. Nat. Photonics 17(5), 386–392 (2023) https://doi.org/10.1038/s41566-023-01189-x
66
Y.F. Gao,, Z. Jiang,, L.L. Zhang,, L. He,, J. Zhao,: Unidirectional propagation of coupled edge states in sandwich topological photonic crystals. J. Appl. Phys. 124(21), 213107 (2018) https://doi.org/10.1063/1.5047647
67
L. He,, Y.F. Gao,, Z. Jiang,, L.S. Wang,, J. Zhou,, X.F. Xu,: A unidirectional air waveguide basing on coupling of two self-guiding edge modes. Opt. Laser Technol. 108, 265–272 (2018) https://doi.org/10.1016/j.optlastec.2018.06.044
68
Y.H. He,, Y.F. Gao,, Y. He,, X.F. Qi,, J.Q. Si,, M. Yang,, S.Y. Zhou,: Realization of edge and corner states in photonic crystals with kagome lattices through topological insulator generators. Opt. Laser Technol. 161, 109196 (2023) https://doi.org/10.1016/j.optlastec.2023.109196
69
Z. Jiang,, Y.F. Gao,, L. He,, J.P. Sun,, H. Song,, Q. Wang,: Manipulation of pseudo-spin guiding and flat bands for topological edge states. Phys. Chem. Chem. Phys. 21(21), 11367–11375 (2019) https://doi.org/10.1039/C9CP00789J
J. Lu,, C. Qiu,, L. Ye,, X. Fan,, M. Ke,, F. Zhang,, Z. Liu,: Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13(4), 369–374 (2017) https://doi.org/10.1038/nphys3999
72
Y. Kang,, X. Ni,, X. Cheng,, A.B. Khanikaev,, A.Z. Genack,: Pseudo-spin-valley coupled edge states in a photonic topological insulator. Nat. Commun. 9(1), 3029 (2018) https://doi.org/10.1038/s41467-018-05408-w
73
J.H. Poynting,: On the transfer of energy in the electromagnetic field. Proc. R. Soc. Lond. 36(228–231), 186–187 (1883) https://doi.org/10.1098/rspl.1883.0096