|
|
|
Vehicular Mini-LED backlight display inspection based on residual global context mechanism |
Guobao Zhao, Xi Zheng, Xiao Huang, Yijun Lu, Zhong Chen, Weijie Guo( ) |
| Department of Electronic Science, Xiamen University, Xiamen 361000, China |
|
|
|
|
Abstract Mini-LED backlight has emerged as a promising technology for high performance LCDs, yet the massive detection of dead pixels and precise LEDs placement are constrained by the miniature scale of the Mini-LEDs. The high-resolution network (Hrnet) with mixed dilated convolution and dense upsampling convolution (MDC-DUC) module and a residual global context attention (RGCA) module has been proposed to detect the quality of vehicular Mini-LED backlights. The proposed model outperforms the baseline networks of Unet, Pspnet, Deeplabv3+, and Hrnet, with a mean intersection over union (Miou) of 86.91%. Furthermore, compared to the four baseline detection networks, our proposed model has a lower root-mean-square error (RMSE) when analyzing the position and defective count of Mini-LEDs in the prediction map by canny algorithm. This work incorporates deep learning to support production lines improve quality of Mini-LED backlights.
|
| Keywords
Mini-LED
Automated optical inspection
Deep learning
Display
|
|
Corresponding Author(s):
Weijie Guo
|
|
Issue Date: 19 November 2024
|
|
| 1 |
E.G. Chen,, Z.G. Fan,, K.X. Zhang,, C. Huang,, S. Xu,, Y. Ye,, J. Sun,, Q. Yan,, T. Guo,: Broadband beam collimation metasurface for full-color micro-LED displays. Opt. Express 32(6), 10252–10264 (2024)
https://doi.org/10.1364/OE.518535
|
| 2 |
E.G. Chen,, M.Y. Zhao,, K.K. Chen,, H. Jin,, X. Chen,, J. Sun,, Q. Yan,, T. Guo,: Metamaterials for light extraction and shaping of micro-scale light-emitting diodes: from the perspective of onedimensional and two-dimensional photonic crystals. Opt. Express 31(11), 18210–18226 (2023)
https://doi.org/10.1364/OE.489598
|
| 3 |
Y.X. Bian,, Q.L. Liu,, Z.F. Zhang,, D. Liu,, A. Hussian,, C. Kuang,, H. Li,, X. Liu,: Portable multi-spectral lens-less microscope with wavelength-self-calibrating imaging sensor. Opt. Lasers Eng. 111, 25–33 (2018)
https://doi.org/10.1016/j.optlaseng.2018.07.009
|
| 4 |
Y.G. Huang,, E.L. Hsiang,, M.Y. Deng,, S.T. Wu,: Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9(1), 105 (2020)
https://doi.org/10.1038/s41377-020-0341-9
|
| 5 |
X. Hu,, J. Cai,, Y. Liu,, M. Zhao,, E. Chen,, J. Sun,, Q. Yan,, T. Guo,: Design of inclined omni-directional reflector for side-wall-emission-free micro-scale light-emitting diodes. Opt. Laser Technol. 154, 108335 (2022)
https://doi.org/10.1016/j.optlastec.2022.108335
|
| 6 |
E. Hsiang,, Z. Yang,, Q. Yang,, Y.F. Lan,, S.T. Wu,: Prospects and challenges of Mini-LED, OLED, and Micro-LED displays. J. Soc. Inf. Disp. 29(6), 446–465 (2021)
https://doi.org/10.1002/jsid.1058
|
| 7 |
S.J. Zhou,, Z.F. Liao,, K. Sun,, Z. Zhang,, Y. Qian,, P. Liu,, P. Du,, J. Jiang,, Z. Lv,, S. Qi,: High-power AlGaN-based ultrathin tunneling junction deep ultraviolet light-emitting diodes. Laser Photonics Rev. 18(1), 2300464 (2024)
https://doi.org/10.1002/lpor.202300464
|
| 8 |
B.J. Fan,, X.Y. Zhao,, J.Q. Zhang,, Y. Sun,, H. Yang,, L.J. Guo,, S. Zhou,: Monolithically integrating III-nitride quantum structure for full-spectrum white LED via bandgap engineering heteroepitaxial growth. Laser Photonics Rev. 17(3), 2200455 (2023)
https://doi.org/10.1002/lpor.202200455
|
| 9 |
H. Akimoto,, A. Yamamoto,, H. Washio,, T. Nakano,: Design and process of 2D backlight beyond HDR 5000 nits. SID Symposium Digest of Technical Papers, 52(2), 628–631 (2021)
https://doi.org/10.1002/sdtp.14761
|
| 10 |
Z.Y. Yang,, E.L. Hsiang,, Y.Z. Qian,, S.T. Wu,: Performance comparison between Mini-LED backlit LCD and OLED display for 156-inch notebook computers. Appl. Sci. 12, 1239 (2022)
https://doi.org/10.3390/app12031239
|
| 11 |
G.J. Tan,, Y.G. Huang,, M.C. Li,, S.L. Lee,, S.T. Wu,: High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 26(13), 16572–16584 (2018)
https://doi.org/10.1364/OE.26.016572
|
| 12 |
Y.C. Du,, J.P. Chen,, H. Zhou,, X. Yang,, Z. Wang,, J. Zhang,, Y. Shi,, X. Chen,, X. Zheng,: An automated optical inspection (AOI) platform for three-dimensional (3D) defects detection on glass micro-optical components (GMOC). Opt. Commun. 545, 129736 (2023)
https://doi.org/10.1016/j.optcom.2023.129736
|
| 13 |
H.X. Liu,, W. Zhou,, Q.W. Kuang,, L. Cao,, B. Gao,: Defect detection of IC wafer based on two-dimension wavelet transform. Microelectronics J. 41(2–3), 171–177 (2010)
https://doi.org/10.1016/j.mejo.2010.01.015
|
| 14 |
D. Tsai,, P.C. Lin,, C. Lu,: An independent component analysis-based filter design for defect detection in low-contrast surface images. Pattern Recognit. 39(9), 1679–1694 (2006)
https://doi.org/10.1016/j.patcog.2006.03.005
|
| 15 |
S.H. Huang,, Y.C. Pan,: Automated visual inspection in the semiconductor industry: a survey. Comput. Ind. 66, 1–10 (2015)
https://doi.org/10.1016/j.compind.2014.10.006
|
| 16 |
G. Nam,, H. Lee,, S. Oh,, M.H. Kim,: Measuring color defects in flat panel displays using HDR imaging and appearance modeling. IEEE Trans. Instrum. Meas. 65(2), 297–304 (2016)
https://doi.org/10.1109/TIM.2015.2485341
|
| 17 |
M.Y. Chen,, S.X. Han,, C. Li,: Efficient Micro-LED defect detection based on microscopic vision and deep learning. Opt. Lasers Eng. 177, 108116 (2024)
https://doi.org/10.1016/j.optlaseng.2024.108116
|
| 18 |
H. Yang,, S. Mei,, K. Song,, B. Tao,, Z. Yin,: Transfer-learningbased online Mura defect classification. IEEE Trans. Semicond. Manuf. 31(1), 116–123 (2018)
https://doi.org/10.1109/TSM.2017.2777499
|
| 19 |
Y. Park,, I.S. Kweon,: Ambiguous surface defect image classification of AMOLED displays in smartphones. IEEE Trans. Industr. Inform. 12(2), 597–607 (2016)
https://doi.org/10.1109/TII.2016.2522191
|
| 20 |
Z. Li,, Q. Hou,, Z. Wang,, F. Tan,, J. Liu,, W. Zhang,: End-to-end learned single lens design using fast differentiable ray tracing. Opt. Lett. 46(21), 5453–5456 (2021)
https://doi.org/10.1364/OL.442870
|
| 21 |
Y. Fu,, J. Fan,, S. Xing,, Z. Wang,, F. Jing,, M. Tan,: Image segmentation of cabin assembly scene based on improved RGB-D mask R-CNN. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)
https://doi.org/10.1109/TIM.2022.3145388
|
| 22 |
G. Xu,, C. Cheng,, W. Yang,, W. Xie,, L. Kong,, R. Hang,, F. Ma,, C. Dong,, J. Yang,: Oceanic eddy identification using an AI scheme. Remote Sens. (Basel) 11(11), 1349 (2019)
https://doi.org/10.3390/rs11111349
|
| 23 |
J. Wang,, K. Sun,, T. Cheng,, B. Jiang,, C. Deng,, Y. Zhao,, D. Liu,, Y. Mu,, M. Tan,, X. Wang,, W. Liu,, B. Xiao,: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2021)
https://doi.org/10.1109/TPAMI.2020.2983686
|
| 24 |
O. Akcay,, A.C. Kinaci,, E.O. Avsar,, U. Aydar,: Semantic segmentation of high-resolution airborne images with dual-stream DeepLabV3+. ISPRS Int. J. Geoinf. 11(1), 23 (2021)
https://doi.org/10.3390/ijgi11010023
|
| 25 |
Y. Li,, G. Lu,, J. Li,, Z. Zhang,, D. Zhang,: Facial expression recognition in the wild using multi-level features and attention mechanisms. IEEE Trans. Affect. Comput. 14(1), 451–462 (2023)
https://doi.org/10.1109/TAFFC.2020.3031602
|
| 26 |
Y. Cao,, J. Xu,, S. Lin,, F. Wei,, H. Hu,: Global context networks. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 6881–6895 (2023)
https://doi.org/10.1109/TPAMI.2020.3047209
|
| 27 |
A. Tang,, Y. Jiang,, Q. Yu,, Z. Zhang,: A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries. J. Energy Storage 68, 107734 (2023)
https://doi.org/10.1016/j.est.2023.107734
|
| 28 |
R. Zhang,, F. Zhu,, J.Y. Liu,, G. Liu,: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Trans. Inf. Forensics Security 15, 1138–1150 (2020)
https://doi.org/10.1109/TIFS.2019.2936913
|
| 29 |
C. Tian,, Y. Xu,, Z. Li,, W. Zuo,, L. Fei,, H. Liu,: Attention-guided CNN for image denoising. Neural Netw. 124, 117–129 (2020)
https://doi.org/10.1016/j.neunet.2019.12.024
|
| 30 |
D. Li,, S. Gong,, S. Niu,, Z. Wang,, D. Zhou,, H. Lu,: Image blind denoising using a generative adversarial network for LED chip visual localization. IEEE Sens. J. 20(12), 6582–6595 (2020)
https://doi.org/10.1109/JSEN.2020.2976576
|
| 31 |
Z. Wang,, S. Gong,, D. Li,, H. Lu,: Error analysis and improved calibration algorithm for LED chip localization system based on visual feedback. Int. J. Adv. Manuf. Technol. 92(9–12), 3197–3206 (2017)
https://doi.org/10.1007/s00170-017-0390-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|