Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science in China  2009, Vol. 3 Issue (1): 15-24   https://doi.org/10.1007/s11706-009-0017-0
  RESEARCH ARTICLE 本期目录
Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process
Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process
Ping OUYANG, Yun-qing KANG, Guang-fu YIN(), Zhong-bing HUANG, Ya-dong YAO, Xiao-ming LIAO
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
 全文: PDF(346 KB)   HTML
Abstract

In this work, chemically bonded poly(D, L-lactide)-polyethylene glycol-poly(D, L-lactide) (PLA-PEG-PLA) triblock copolymers with various PEG contents and PLA homopolymer were synthesized via melt polymerization, and were confirmed by FTIR and 1H-NMR results. The molecular weight and polydispersity of the synthesized PLA and PLA-PEG-PLA copolymers were investigated by gel permeation chromatography. Hydrophilicity of the copolymers was identified by contact angle measurement. PLA-PEG-PLA and PLA microparticles loaded with and without PTX were then produced via solution enhanced dispersion by supercritical CO2 (SEDS) process. The effect of the PEG content on the particle size distribution, morphology, drug load, and encapsulation efficiency of the fabricated microparticles was also studied. Results indicate that PLA and PLA-PEG-PLA microparticles all exhibit sphere-like shape with smooth surface, when PEG content is relatively low. The produced microparticles have narrow particle size distributions and small particle sizes. The drug load and encapsulation efficiency of the produced microparticles decreases with higher PEG content in the copolymer matrix. Moreover, high hydrophilicity is found when PEG is chemically attached to originally hydrophobic PLA, providing the produced drug-loaded microparticles with high hydrophilicity, biocompatibility, and prolonged circulation time, which are considered of vital importance for vessel-circulating drug delivery system.

Key wordssupercritical CO2 (scCO2)    SEDS    PLA-PEG-PLA    paclitaxel
收稿日期: 2008-10-10      出版日期: 2009-03-05
Corresponding Author(s): YIN Guang-fu,Email:nic0700@scu.edu.cn   
 引用本文:   
. Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process[J]. Frontiers of Materials Science in China, 2009, 3(1): 15-24.
Ping OUYANG, Yun-qing KANG, Guang-fu YIN, Zhong-bing HUANG, Ya-dong YAO, Xiao-ming LIAO. Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process. Front Mater Sci Chin, 2009, 3(1): 15-24.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-009-0017-0
https://academic.hep.com.cn/foms/CN/Y2009/V3/I1/15
Fig.1  
Fig.2  
Fig.3  
samplemolecular weight (Mn)polydispersity (Mw/Mn)
PLA158 kDa1.44
PLA-PEG-PLA 5a)154 kDa1.38
PLA-PEG-PLA 10140 kDa1.37
PLA-PEG-PLA 15128 kDa1.28
PLA-PEG-PLA 2590 kDa1.23
PLA-PEG-PLA 5074 kDa1.25
Tab.1  
Fig.4  
Fig.5  
Fig.6  
sampledrug load (DL)encapsulation efficiency (EE)
PTX/PLA7.1%35.5%
PTX/PLA-PEG-PLA 5a)6.2%31%
PTX/PLA-PEG-PLA 105.3%26.5%
PTX/PLA-PEG-PLA 155.1%25.5%
Tab.2  
1 Rowinsky E K, Donehower R C. Drug therapy-paclitaxel (Taxol). The New England Journal of Medicine , 1995, 332: 1004–1014
2 Mu L, Feng S S. Fabrication, characterization and in vitro release of paclitaxel (Taxol?) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. Journal of Controlled Release , 2001, 76: 239–254
3 Singla A K, Garg A, Aggarwal D. Paclitaxel and its formulations. International Journal of Pharmaceutics , 2002, 235: 179–192
4 Wu J, Liu Q, Lee R J. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics , 2006, 316: 148–153
5 Park E K, Kim S Y, Lee S B. Folate-conjugated methoxy poly(ethylene glycol)/poly(?-caprolactone) amphiphilic block copolymeric micelles for tumor- targeted drug delivery. Journal of Controlled Release , 2005, 109: 158–168
6 Bae K H, Lee Y, Park T G. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules , 2007, 8: 650–656
7 Lee L Y, Smith K A, Wang C-H. Fabrication of micro and nanoparticles of paclitaxel-loaded poly-L-lactide for controlled release using supercritical antisolvent method: effects of thermodynamics and hydrodynamics. Molecular Engineering of Biological and Chemical Systems (MEBCS). Singapore-MIT Alliance (SMA) , 2005, 17
8 Kim S H, Jeong J H, Chun K W. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir , 2005, 21(19): 8852–8857
9 Mauduit J, Bukh N, Vert M. Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively. I. The case of gentamycin base and gentamycin sulfate in poly(lactic acid) oligomers. Journal of Controlled Release , 1993, 23(3): 209–220
10 Perrin D E, English J P. Handbook of Biodegradable Polymers, Chapter 1. Amsterdam: Harwood Academic, 1997
11 Llovet M I, Egea M A, Valero J. Methotrexate loaded nanoparticles: analysis of drug content and study of the matrix structure. Drug Development and Industrial Pharmacy , 1995, 21(15): 1761–1771
12 Gomez-Lopera S A, Plaza R C, Delgado A V. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. Journal of Colloid and Interface Science , 2001, 240: 40–47
13 Song K H, Lee C H, Lim J S. Preparation of L-PLA particles by a continuous supercritical antisolvent precipitation process. Korean Journal of Chemistry Engineering , 2002, 19(1): 139–145
14 Chan P, Kurisawa M, Chung J E. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials , 2007, 28: 540–549
15 Yoo H S, Park T G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. Journal of Controlled Release , 2004, 100: 247–256
16 Zhao X B, Lee R J. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Advanced Drug Delivery Reviews , 2004, 56: 1193–1204
17 He G, Ma L L, Pan J. ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and “stealth” particle characteristics. International Journal of Pharmaceutics , 2007, 334: 48–55
18 Hiemstra C, Zhong Z Y, Jiang X. PEG-PLLA and PEG-PDLA multiblock copolymers: Synthesis and in situ hydrogel formation by stereocomplexation. Journal of Controlled Release , 2006, 116: e17-e19
19 Kim H D, Bae E H, Kwon I C. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials , 2004, 25: 2319–2329
20 Sun J, Hong Z, Yang L. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer. Polymer , 2004, 45: 5969–5977
21 Lai W C, Liau W B, Lin T T. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer , 2004, 45: 3073–3080
22 Rantakyla M, Jantti M, Aaltonen O. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique. The Journal of Supercritical Fluids , 2002, 24: 251–263
23 Bush J R, Akgerman A, Hall K R. Synthesis of controlled release device with supercritical CO2 and co-solvent. The Journal of Supercritical Fluids , 2007, 41: 311–316
24 Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids. European Journal of Pharmaceutical Sciences , 2000, 10: 1–9
25 Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution enhanced dispersion by supercritical fluids (SEDS). Pharmaceutical Research , 1999, 16(5): 676–681
26 Kazarian S G. Polymer processing with supercritical fluids. Polymer Science, Series C , 2000, 42(1): 78–101
27 Nalawade S P, Picchioni F, Janssen L P B M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in Polymer Science , 2006, 31(1): 19–43
28 Hyatt J A. Liquid and supercritical carbon dioxide as organic solvents. The Journal of Organic Chemistry , 1984, 49: 5097–5101
29 DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science , 1992, 257: 945–947
30 Date A A, Patravale V B. Current strategies for engineering drug nanoparticles. Current Opinion in Colloid & Interface Science , 2004, 9: 222–235
31 Reverchon E, Porta G D, Rosa I D. Supercritical antisolvent micronization of some biopolymers. The Journal of Supercritical Fluids , 2000, 18: 239–245
32 York P. Strategies for particle design using supercritical fluid technologies. Pharmaceutical Science & Technology Today ,β1999, 2(11): 430–440
33 Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey. The Journal of Supercritical Fluids , 2001, 20: 179–219
34 Yeo S D, Kiran E. Formation of polymer particles with supercritical fluids: A review.The Journal of Supercritical Fluids , 2005, 34: 287–308
35 Majerik V, Charbit G, Badens E. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. The Journal of Supercritical Fluids , 2007, 40: 101–110
36 Chen A Z, Pu X M, Kang Y Q. Preparation of 5-fluorouracil-poly(L-lactide) microparticles using solution-enhanced dispersion by supercritical CO2. Macromolecular Rapid Communications , 2006, 27: 1254–1259
37 Chen A Z, Pu X M, Kang Y Q. Study of poly(L-lactide) microparticles based on supercritical CO2. Journal of Material Science: Material Medicine , 2007, 18: 2339–2345
38 Wang Y, Dave R N, Pfeffer R. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. The Journal of Supercritical Fluids , 2004, 28: 85–99
39 Wang Y, Pfeffer R, Dave R N. Polymer encapsulation of fine particles by a supercritical antisolvent process. AIChE Journal , 2005, 51(2): 440–455
40 Loo S C J, Ooi C P, Boey Y C F. Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA). Polymer Degradation and Stability , 2004, 83: 259–265
41 Liu W, Yang A, Li Z. PEGylated PLGA nanoparticles as tumor ecrosis factor-α receptor blocking peptide carriers: preparation, characterization and release in vitro. Journal of Wuhan University of Technology-Material Science Edition , 2007, 22(1): 112–116
42 Kubies D, Rypacek F, Kovarova J. Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials , 2000, 21: 529–536
43 Dong Y, Feng S S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials , 2004, 25: 2843–2849
44 Ren J, Hong H, Ren T. Preparation and characterization of magnetic PLA-PEG composite nanoparticles for drug targeting. Reactive & Functional Polymers , 2006, 66: 944–951
45 Chang Y, Shih Y J, Ruaan R C. Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science , 2008, 309: 165–174
46 Zhang L F, Sun R, Xu L. Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Materials Science and Engineering: C , 2008, 28: 141–149
47 Gopferich A. Handbook of Biodegrable Polymers, Chapter 22. Amsterdam: OPA, 1997
48 Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. Journal of Materials Science: Materials in Medicine , 1990, 1(4): 198–206
49 Rokkanen P, Bostman O, Hirvensalo E. Totally biodegradable implants for bone fixation and ligament repair. MRS Bulletin , 2000, 25(1): 21–24
50 Nakamura T, Hitomi S, Watanabe S. Bioabsorption of polylactides with different molecular properties. Journal of Biomedical Materials Research , 1989, 23(10): 1115–1130
51 Zhang X, Wyss U P, Pichora D,. A mechanistic study of antibiotic release from biodegradable poly(d,1-lactide) cylinders. Journal of Controlled Release , 1994, 31(2): 129–144
52 US Pharmacopeia. Organic Volatile Impurities, 25th Revision, 2002, 1943–1945
53 Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. Journal of Pharmaceutical Sciences , 2001, 90(10): 1628–1636
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed