Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science in China  2009, Vol. 3 Issue (2): 218-223   https://doi.org/10.1007/s11706-009-0020-5
  RESEARCH ARTICLE 本期目录
Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions
Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions
He-sheng LI1,2, Yong-xin QI1,2, Yuan-pei ZHANG1,2, Mu-sen LI1,2()
1. Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan 250061, China; 2. Shandong Engineering Research Center for Superhard Materials, Zoucheng 273500, China
 全文: PDF(226 KB)   HTML
Abstract

The fracture behavior of the diamond single crystals with metallic inclusions was investigated in the present paper. Single diamond crystals with metallic inclusions were formed by a special process with high pressure and high temperature (HPHT). The inclusions trapped in the diamond were characterized mainly to be metallic carbide of (Fe,Ni)23C6 or Fe3C and solid solution of γ-(Fe,Ni) by transmission electronic microscopy (TEM). The grain size of the inclusions is about micrometers. The fracture characteristics of the diamond single crystals, after compression and heating, were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The fracture sections of the compressed and heated diamonds were found to be parallel to the (111) plane. The interface of the inclusions and diamond is deduced to be the key factor and the original region of the fracture formation. Mechanisms of the fracture behavior of the HPHT synthesized diamonds are discussed.

Key wordssynthetic diamond    metallic inclusions    fracture    microstructure
收稿日期: 2008-10-10      出版日期: 2009-06-05
Corresponding Author(s): LI Mu-sen,Email:msli@sdu.edu.cn   
 引用本文:   
. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions[J]. Frontiers of Materials Science in China, 2009, 3(2): 218-223.
He-sheng LI, Yong-xin QI, Yuan-pei ZHANG, Mu-sen LI. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions. Front Mater Sci Chin, 2009, 3(2): 218-223.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-009-0020-5
https://academic.hep.com.cn/foms/CN/Y2009/V3/I2/218
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Ferro S. Synthesis of diamond. Journal of Material Chemistry , 2002, 12: 2843-2855
doi: 10.1039/b204143j
2 Queisser H J. Modern Crystallograph . Berlin: Springer-Verlag, 1984
3 Huggins C M, Cannon P. Diamond containing controllable impurity concentration. Nature , 1962, 120: 829-830
doi: 10.1038/194829a0
4 Pavel E. The nature of the metallic inclusions in synthetic diamond crystals synthesized at ~5.5 GPa in Fe-C system. Solid State Communications , 1990, 76(4): 531-533
doi: 10.1016/0038-1098(90)90664-W
5 Kaneko J, Yonezawa C, Kasugai Y, . Determination of metallic impurities in high-purity type a diamond grown by high-pressure and high-temperature synthesis using neutron activation analysis. Diamond and Related Materials , 2000, 9: 2019-2023
doi: 10.1016/S0925-9635(00)00357-5
6 Kupriyanov I N, Gusev V A, Borzdo Y M, . Photoluminescence study of annealed nickel- and nitrogen- containing synthetic diamond. Diamond and Related Materials , 1999, 8: 1301-1309
doi: 10.1016/S0925-9635(99)00122-3
7 Kanda H, Watanabe K. Distribution of nickel related luminescence centers in HPHT diamond. Diamond and Related Materials , 1999, 8: 1463-1469
doi: 10.1016/S0925-9635(99)00070-9
8 Jia X, Hayakawa S, Li W, . Cobalt impurities in synthetic diamond. Diamond and Related Materials , 1999, 8: 1895-1899
doi: 10.1016/S0925-9635(99)00164-8
9 Shimomura S, Kanda H, Nakezawa H. Observation of micro-inclusions in diamond by scanning X-ray analytical microscope. Diamond and Related Materials , 1997, 6: 1680-1682
doi: 10.1016/S0925-9635(07)00041-6
10 Isoya J, Kanda H, Norris J R, . Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: Site and spin multiplicity. Physics Review B , 1990, 41: 3905-3913
doi: 10.1103/PhysRevB.41.3905
11 Collins A T. Spectroscopy of defects and transition metals in diamond. Diamond and Related Materials , 2000, 9: 417-423
doi: 10.1016/S0925-9635(99)00314-3
12 Langenhorst F, Poirier J P, Frost D J. TEM observations of microscopic inclusions in synthetic diamond. Journal of Materials Science , 2004, 39: 1865-1867
doi: 10.1023/B:JMSC.0000016205.14981.11
13 Yin L W, Zou Z D, Li M S, . Some inclusions and defects in a synthetic diamond single crystal. Journal of Crystal Growth , 2000, 218: 455-458
doi: 10.1016/S0022-0248(00)00562-5
14 Giardini A A, Tyding J E. Diamond synthesis: observations on the mechanism of formation. American Mineralogist , 1962, 47: 1393-1399
15 Yin L W, Li M S, Sun D S, . Transmission electron microscopic study of some inclusions in synthetic diamond crystals. Materials Letters , 2001, 48: 21-25
doi: 10.1016/S0167-577X(00)00274-3
16 Liu Y X, Xiao L M, Yin L W. Entrapment of inclusions in diamond crystals grown from Fe-Ni-C system. Journal of Materials Science and Technology , 2002, 18(2): 171-172
17 Zhang Y F, Zhang F Q, Chen G H. A study of the pressure-temperature conditions for diamond growth. Journal of Materials Research , 1994, 9: 2845-2849
doi: 10.1557/JMR.1994.2845
18 Yin L W, Li M S, Gong Z G, . Analysis of nanometer inclusions in high pressure synthesized diamond single crystals. Chemical Physics Letters , 2002, 355: 490-496
doi: 10.1016/S0009-2614(02)00282-8
19 Shterenberg L E, Slesarev V N, Korsunskaya I A, . The experimental study of the interaction between the melt, carbides and diamond in the iron-carbon system at high pressure. High Temperatures High Pressures , 1975, 7: 517-522
20 Watson J H P, Li Z, Hyde A M. Compressive strength of synthetic diamond grits containing metallic nanoparticles. Applied Physics Letters , 2000, 77(26): 4330-4331
doi: 10.1063/1.1334352
21 Xu B, Li M S, Cui J J, . An investigation of a thin metal film covering on HPHT as-grown diamond from Fe-Ni-C system. Materials Science and Engineering: A , 2005, 396: 352-359
doi: 10.1016/j.msea.2005.02.005
22 Field J E. The Properties of Natural and Synthetic Diamond. London: Academic Press, 1992, 473-514
23 Li J, Mao H K, Fei Y, . Compression of Fe3C to 30 GPa at room temperature. Physics Chemical Miner , 2002, 29: 166-169
doi: 10.1007/s00269-001-0224-4
24 Strong H M, Hanneman R E. Crystallization of diamond and graphite. Journal of Chemical Physics , 1967, 46(9): 3668-3676
doi: 10.1063/1.1841272
25 Anthony T R. Stresses generated by impurities in diamond. Diamond and Related Materials , 1995, 4: 1346-1352
doi: 10.1016/0925-9635(95)00317-7
26 Shulshenko A A, Varga L, Hidasi B. Strength and thermal resistance of synthetic diamonds. International Journal Refractory Metal and Hard Materials , 1992, 11(5): 285-294
doi: 10.1016/0263-4368(92)90040-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed