Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process
Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process
Yu-rong CAI1,2, Rui-kang TANG2()
1. The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Department of Chemistry and Center for Biopathways and Biomaterials, Zhejiang University, Hangzhou 310027, China
Biomineralization processes result in organic/inorganic hybrid materials with complex shapes, hierarchical structures, and superior material properties. Recent developments in biomineralization and biomaterials have demonstrated that calcium phosphate particles play an important role in the formation of hard tissues in nature. In this paper, current concepts in biomineralization, such as nano assembly, biomimetic shell structure, and their applications are introduced. It is confirmed experimentally that enamel- or bone-liked apatite can be achieved by oriented aggregations using nano calcium phosphates as starting materials. The assembly of calcium phosphate can be either promoted or inhibited by different biomolecules so that the kinetics can be regulated biologically. In this paper, the role of nano calcium phosphate in tissue repair is highlighted. Furthermore, a new, interesting result on biomimetic mineralization is introduced, which can offer an artificial shell for living cells via a biomimetic method.
. Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process[J]. Frontiers of Materials Science in China, 2009, 3(2): 124-131.
Yu-rong CAI, Rui-kang TANG. Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process. Front Mater Sci Chin, 2009, 3(2): 124-131.
Gupta H S, Wagermaier W, Zickler G A, . Nanoscale deformation mechanisms in bone. Nano Letters , 2005, 5(10): 2108-2111 doi: 10.1021/nl051584b
5
Gao H J, Ji B H, Jager I L, . Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(10): 5597-5600 doi: 10.1073/pnas.0631609100
6
Cui F Z, Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. Journal of Tissue Engineering and Regenerative Medicine , 2007, 1: 185-191 doi: 10.1002/term.21
7
Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science & Engineering R: Reports , 2007, 57(1-6): 1-27
8
Currey J D. Materials science — hierarchies in biomineral structures. Science , 2005, 309(5732): 253-254 doi: 10.1126/science.1113954
9
Giachelli C M. Ectopic calcification — gathering hard facts about soft tissue mineralization. American Journal of Pathology , 1999, 154(3): 671-675
10
Kirsch T. Determinants of pathological mineralization. Current Opinion in Rheumatology , 2006, 18(2): 174-180 doi: 10.1097/01.bor.0000209431.59226.46
11
Christian R C, Fitzpatrick L A. Vascular calcification. Current Opinion in Nephrology and Hypertension , 1999, 8(4): 443-448 doi: 10.1097/00041552-199907000-00008
12
Feng Q L, Cui F Z, Wang H, . Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth , 2000, 210(4): 735-740 doi: 10.1016/S0022-0248(99)00502-3
13
Wang L J, Tang R, Bonstein T, . Enamel demineralization in primary and permanent teeth. Journal of Dental Research , 2006, 85(4): 359-363 doi: 10.1177/154405910608500415
14
Boskey A. Bone mineral crystal size. Osteoporosis International , 2003, 14: S16-S20 doi: 10.1007/s00198-003-1468-2
15
Narayan R J, Kumta P N, Sfeir C, . Nanostructured ceramics in medical devices: applications and prospects. JOM , 2004, 56(10): 38-43 doi: 10.1007/s11837-004-0289-x
16
Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews , 2007, 59(4-5): 339-359 doi: 10.1016/j.addr.2007.03.016
17
Xu H H K, Weir M D, Burguera E F, . Injectable and macroporous calcium phosphate cement scaffold. Biomaterials , 2006, 27(24): 4279-4287 doi: 10.1016/j.biomaterials.2006.03.001
18
de Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth. Biomineralization , 2003, 54: 57-93
19
Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie - International Edition , 2003, 42(21): 2350-2365 doi: 10.1002/anie.200200562
20
Gilbert B, Banfield J F. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. Reviews in Mineralogy and Geochemistry , 2005, 59: 109-155 doi: 10.2138/rmg.2005.59.6
21
Banfield J F, Welch S A, Zhang H Z, . Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science , 2000, 289(5480): 751-754 doi: 10.1126/science.289.5480.751
22
Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science , 1998, 281(5379): 969-971 doi: 10.1126/science.281.5379.969
23
Penn R L. Kinetics of oriented aggregation. Journal of Physical Chemistry B , 2004, 108(34): 12707-12712 doi: 10.1021/jp036490+
24
Huang F, Zhang H Z, Banfield J F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters , 2003, 3(3): 373-378 doi: 10.1021/nl025836+
25
Yang H G, Zeng H C. Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angewandte Chemie - International Edition , 2004, 43(39): 5206-5209 doi: 10.1002/anie.200460767
26
Cho K S, Talapin D V, Gaschler W, . Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemical Society , 2005, 127(19): 7140-7147 doi: 10.1021/ja050107s
27
Colfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie - International Edition , 2005, 44(35): 5576-5591 doi: 10.1002/anie.200500496
28
Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials , 2003, 15(12): 959-970 doi: 10.1002/adma.200300381
29
Sethmann I, Putnis A, Grassmann O, . Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. American Mineralogist , 2005, 90(7): 1213-1217 doi: 10.2138/am.2005.1833
30
Wang T X, Colfen H, Antonietti M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. Journal of the American Chemical Society , 2005, 127(10): 3246-3247 doi: 10.1021/ja045331g
31
Xu A W, Antonietti M, Colfen H, . Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Advanced Functional Materials , 2006, 16(7): 903-908 doi: 10.1002/adfm.200500716
32
Tao J H, Pan H H, Zeng Y W, . Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. Journal of Physical Chemistry B , 2007, 111(47): 13410-13418 doi: 10.1021/jp0732918
33
Wang L J, Guan X Y, Du C, . Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. Journal of Physical Chemistry C , 2007, 111(17): 6398-6404 doi: 10.1021/jp0675429
34
Proudfoot D, Skepper J N, Shanahan C M, . Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arteriosclerosis Thrombosis and Vascular Biology , 1998, 18(3): 379-388
35
Puy M C, Rodrìguez-Arias J M, Casan P. Lung calcifications and chronic kidney failure. Arch Bronconeumol , 2007, 43: 349-351 doi: 10.1016/S1579-2129(07)60082-2
36
Liu P, Tao J H, Cai Y R, . Role of fetal bovine serum in the prevention of calcification in biological fluids. Journal of Crystal Growth , 2008, 310(22): 4672-4675 doi: 10.1016/j.jcrysgro.2008.09.002
Narasaraju T S B, Phebe D E. Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science , 1996, 31(1): 1-21 doi: 10.1007/BF00355120
39
Hench L L. Bioceramics — from concept to clinic. Journal of the American Ceramic Society , 1991, 74(7): 1487-1510 doi: 10.1111/j.1151-2916.1991.tb07132.x
40
de Leeuw N H. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. Journal of Physical Chemistry B , 2004, 108(6): 1809-1811 doi: 10.1021/jp036784v
41
Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research , 1998, 13(1): 94-117 doi: 10.1557/JMR.1998.0015
42
Whitters C J, Strang R, Brown D, . Dental materials: 1997 literature review. Journal of Dentistry , 1999, 27(6): 401-435 doi: 10.1016/S0300-5712(99)00007-X
43
Robinson C, Connell S, Kirkham J, . Dental enamel — a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry , 2004, 14(14): 2242-2248 doi: 10.1039/b401154f
44
Acil Y, Mobasseri A E, Warnke P H, . Detection of mature collagen in human dental enamel. Calcified Tissue International , 2005, 76(2): 121-126 doi: 10.1007/s00223-004-0122-0
45
Ahn E S, Gleason N J, Nakahira A, . Nanostructure processing of hydroxyapatite-based bioceramics. Nano Letters , 2001, 1(3): 149-153 doi: 10.1021/nl0055299
46
Li L, Pan H H, Tao J H, . Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. Journal of Materials Chemistry , 2008, 18(34): 4079-4084 doi: 10.1039/b806090h
47
Stupp S I, Braun P V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science , 1997, 277(5330): 1242-1248 doi: 10.1126/science.277.5330.1242
48
Cai Y R, Liu Y K, Yan W Q, . Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry , 2007, 17(36): 3780-3787 doi: 10.1039/b705129h
49
Hu Q H, Tan Z, Liu Y K, . Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry , 2007, 17(44): 4690-4698 doi: 10.1039/b710936a
50
Sarikaya M. Biomimetics: Materials fabrication through biology. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(25): 14183-14185 doi: 10.1073/pnas.96.25.14183
51
Hamm C E, Merkel R, Springer O, . Architecture and material properties of diatom shells provide effective mechanical protection. Nature , 2003, 421(6925): 841-843 doi: 10.1038/nature01416
52
Wang B, Liu P, Jiang W G, . Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie - International Edition , 2008, 47(19): 3560-3564 doi: 10.1002/anie.200704718