Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science in China  2009, Vol. 3 Issue (2): 145-153   https://doi.org/10.1007/s11706-009-0029-9
  RESEARCH ARTICLE 本期目录
Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo
Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo
F. L. DE PAULA1, I. C. BARRETO1, M. H. ROCHA-LE?O2, R. BOROJEVIC1, A. M. ROSSI3, F. P. ROSA4, M. FARINA1()
1. Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; 2. Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; 3. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil; 4. Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
 全文: PDF(429 KB)   HTML
Abstract

Tissue engineering is a multidisciplinary research area that aims to develop new techniques and/or biomaterials for medical applications. The objective of the present study was to evaluate the osteogenic potential of a composite of hydroxyapatite and alginate in bone defects with critical sizes, surgically made in the calvaria region of rats. The rats (48 adult males), Rattus norvegicus Wistar, were divided into two groups: control (without composite implantation) and experimental (with composite implantation) and analyzed by optical microscopy at the biological time points 15, 45, 90 and 120 d, and transmission electron microscopy 120 d after the implantation of the biomaterial. It was observed that the biomaterial presented a high degree of fragmentation since the first experimental points studied, and that the fragments were surrounded by new bone after the duration of the project. These areas were studied by analytical transmission electron microscopy using an energy dispersive X-ray spectrometer. Three regions could be distinguished: (1) the biomaterial rich in hydroxyapatite; (2) a thin contiguous region containing phosphorus but without calcium; (3) a region of initial ossification containing mineralizing collagen fibrils with a calcium/phosphorus ratio smaller than the particles of the composite. The intermediate region (without calcium or containing very low amounts of calcium), which just surrounded the composite had not been described in the literature yet, and is probably associated specifically to the biocomposite used. The high performance of the biomaterial observed may be related to the fact that alginate molecules form highly anionic complexes and are capable of adsorbing important factors recognized by integrins from osteoblasts. Regions of fibrotic tissue were also observed mainly in the initial experimental points analyzed. However, it did not significantly influence the final result. In conclusion, the biomaterial presents a great potential for application as bone grafts in the clinical area.

Key wordsbone engineering    bone healing    hydroxyapatite    alginate    biocomposite    analytical microscopy
收稿日期: 2008-12-10      出版日期: 2009-06-05
Corresponding Author(s): FARINA M.,Email:mfarina@anato.ufrj.br   
 引用本文:   
. Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo[J]. Frontiers of Materials Science in China, 2009, 3(2): 145-153.
F. L. DE PAULA, I. C. BARRETO, M. H. ROCHA-LE?O, R. BOROJEVIC, A. M. ROSSI, F. P. ROSA, M. FARINA. Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo. Front Mater Sci Chin, 2009, 3(2): 145-153.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-009-0029-9
https://academic.hep.com.cn/foms/CN/Y2009/V3/I2/145
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 Weiner S, Wagner H D. The material bone: structure mechanical function relations. Annual Review of Materials Science , 1998, 28: 271-298
doi: 10.1146/annurev.matsci.28.1.271
2 Allen M R, Hock J M, Burr D B. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone , 2004, 35(5): 1003-1012
doi: 10.1016/j.bone.2004.07.014
3 Sodek J, McKee M D. Molecular and cellular biology of alveolar bone. Periodontology , 2000, 24: 99-126
doi: 10.1034/j.1600-0757.2000.2240106.x
4 Boskey A L. The organic and inorganic matrices. In: H?llinger J O, Einhorn T A, Doll B A, . Bone Tissue Engineering. 1st ed . Boca Raton, USA: CRC Press, 2005
5 Young M F. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporosis International , 2003, 14: S35-S42
6 Landis J L, Silver H S. The structure and function of normally mineralizing avian tendons. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , 2002, 133: 1135-1157
doi: 10.1016/S1095-6433(02)00248-9
7 Rho J Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics , 1998, 20(2): 92-102
doi: 10.1016/S1350-4533(98)00007-1
8 de Long W G, Einhorn T A, Koval K, . Bone, grafts and bone graft substitutes in orthopedic trauma surgery — a critical analysis. Journal of Bone and Joint Surgery-American Volume , 2007, 89A(3): 649-658
doi: 10.2106/JBJS.F.00465
9 Bernard G W. Healing and repair of osseous defects. Dental Clinics of North America , 1991, 35(3): 469-478
10 Munting E, Mirtchi A A, Lemaitre J. Bone repair of defects filled with a phosphocalcic hydraulic cement—an in vivo Study. Journal of Materials Science-Materials in Medicine , 1993, 4(3): 337-344
doi: 10.1007/BF00122290
11 Ono I, Tateshita T, Satou M, . Treatment of large complex cranial bone defects by using hydroxyapatite ceramic implants. Plastic and Reconstructive Surgery , 1999, 104(2): 339-349
doi: 10.1097/00006534-199908000-00003
12 Cardoso A K M V, Barbosa Jr. A A, Miguel F B, . Histomorphometric analysis of tissue responses to bioactive glass implants in critical defects in rat calvaria. Cells Tissues Organs , 2006, 184: 128-137
doi: 10.1159/000099619
13 Suh H. Tissue restoration, tissue engineering and regenerative medicine. Yonsei Medical Journal , 2000, 41: 681-684
14 Lavik E, Langer R. Tissue engineering: current state and perspectives. Applied Microbiology and Biotechnology , 2004, 65(1): 1-8
doi: 10.1007/s00253-004-1580-z
15 Neumann M, Epple M. Composites of calcium phosphate and polymers as bone substitution materials. European Journal of Trauma , 2006, 32: 125-131
doi: 10.1007/s00068-006-6044-y
16 Eiselt P, Yeh J, Latvala R K, . Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials , 2000, 21(19): 1921-1927
doi: 10.1016/S0142-9612(00)00033-8
17 Anselme K. Osteoblast adhesion on biomaterials. Biomaterials , 2000, 21(7): 667-681
doi: 10.1016/S0142-9612(99)00242-2
18 Ribeiro C C, Barrias C C, Barbosa M A. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials , 2004, 25: 4363-4373
doi: 10.1016/j.biomaterials.2003.11.028
19 Thian E S, Loh N H, Khor K A, . Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials , 2002, 23(14): 2927-2938
doi: 10.1016/S0142-9612(01)00422-7
20 Gombotz W R, Wee S F. Protein release from alginate matrices. Advanced Drug Delivery Reviews , 1998, 31(3): 267-285
doi: 10.1016/S0169-409X(97)00124-5
21 Boontheekul T, Kong H J, Mooney D J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials , 2005, 26(15): 2455-2465
doi: 10.1016/j.biomaterials.2004.06.044
22 Klock G, Pfeffermann A, Ryser C, . Biocompatibility of mannuronic acid-rich alginates. Biomaterials , 1997, 18(10): 707-713
doi: 10.1016/S0142-9612(96)00204-9
23 Kuo C K, Ma P X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials , 2001, 22(6): 511-521
doi: 10.1016/S0142-9612(00)00201-5
24 Rees D A. Polyssacharide shapes and their interactions-some recent advances. Pure and Applied Chemistry , 1981, 53: 1-14
doi: 10.1351/pac198153010001
25 Aslani P, Kennedy R A. Studies on diffusion in alginate gels: 1. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of Controlled Release , 1996, 42(1): 75-82
doi: 10.1016/0168-3659(96)01369-7
26 Miguel F B, Cardoso A K M V, Barbosa A A, . Morphological assessment of the behavior of three-dimensional anionic collagen matrices in bone regeneration in rats. Journal of Biomedical Materials Research Part B - Applied Biomaterials , 2006, 78B(2): 334-339
doi: 10.1002/jbm.b.30492
27 Yuan H P, van den Doel M, Li S H, . A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. Journal of Materials Science - Materials in Medicine , 2002, 13(12): 1271-1275
doi: 10.1023/A:1021191432366
28 Pelissier P, Villars F, Mathoulin-Pelissier S, . Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats. Plastic and Reconstructive Surgery , 2003, 111(6): 1932-1941
doi: 10.1097/01.PRS.0000055044.14093.EA
29 Mastrogiacomo M, Muraglia A, Komlev V, . Tissue engineering of bone: search for a better scaffold. Orthodontics & Craniofacial Research , 2005, 8(4): 277-284
doi: 10.1111/j.1601-6343.2005.00350.x
30 Leventouri T. Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials , 2006, 27(18): 3339-3342
doi: 10.1016/j.biomaterials.2006.02.021
31 Benaqqa C, Chevalier J, Sa?daoui M, . Slow crack growth behavior of hydroxyapatite ceramics. Biomaterials , 2005, 26: 6106-6112
doi: 10.1016/j.biomaterials.2005.03.031
32 Rezwan K, Chen Q Z, Blaker J J, . Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials , 2006, 27(18): 3413-3431
doi: 10.1016/j.biomaterials.2006.01.039
33 Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials , 2003, 24(13): 2133-2151
doi: 10.1016/S0142-9612(03)00037-1
34 Schmitz J P, Schwartz Z, Hollinger J O, . Characterization of rat calvarial nonunion defects. Acta Anatomica , 1990, 138(3): 185-192
doi: 10.1159/000146937
35 Ferreira G R, Cestari T M, Granjeiro J M, . Lack of repair of rat skull critical size defect treated with bovine morphometric protein bound to microgranular bioabsorbable hydroxyapatite. Brazilian Dental Journal , 2004, 15(3): 175-180
doi: 10.1590/S0103-64402004000300002
36 Intini G, Andreana S, Intini F E, . Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration. Journal of Translational Medicine , 2007, 5: 1-13
doi: 10.1186/1479-5876-5-13
37 Wu T J, Huang H H, Lan C W, . Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials , 2004, 25: 651-658
doi: 10.1016/S0142-9612(03)00576-3
38 Thomsen P, Esposito M, Gretzer C, . Inflammatory response to implanted materials. In: Davies J E. Bone Engineering.1st Ed . Toronto, Canada. Squared incorporated, 2000
39 Yang L, Zhang Y, Cui F Z. Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish. Biomedical Materials , 2007, 2(1): 21-25
doi: 10.1088/1748-6041/2/1/004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed