Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Front. Mater. Sci.  2010, Vol. 4 Issue (1): 29-33   https://doi.org/10.1007/s11706-010-0009-0
  Research articles 本期目录
Electrospun nanofibers: Work for medicine?
Electrospun nanofibers: Work for medicine?
Susan LIAO,Casey K. CHAN,S. RAMAKRISHNA,
Healthcare and Energy Materials Laboratory, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore;
 全文: PDF(229 KB)  
Abstract:Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of the extracellular matrix (ECM) for tissue/organ replacement. Nanofiber scaffolds with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structures. Studies on cell-nanofiber interactions, including studies on stem cells, have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Furthermore, clinical application of electrospun nanofibers including wound healing, tissue regeneration, drug delivery and stem cell therapy are highly feasible due to the ease and flexibility of fabrication of making nanofiber with this cost-effective method using electrospinning. In this review, we have highlighted the current state of the art and provided future perspectives on electrospun nanofiber in medical applications.
Key wordsbiomimetic materials    nanofiber    electrospinning    stem cell    medicine
出版日期: 2010-03-05
 引用本文:   
. Electrospun nanofibers: Work for medicine?[J]. Front. Mater. Sci., 2010, 4(1): 29-33.
Susan LIAO, Casey K. CHAN, S. RAMAKRISHNA, . Electrospun nanofibers: Work for medicine?. Front. Mater. Sci., 2010, 4(1): 29-33.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-010-0009-0
https://academic.hep.com.cn/foms/CN/Y2010/V4/I1/29
Hunt J A. Materials in a cellular world. NatureMaterials, 2008, 7(8): 617–618

doi: 10.1038/nmat2242
Stevens M M, George J H. Exploring and engineeringthe cell surface interface. Science, 310(5751): 1135–1138

doi: 10.1126/science.1106587
Langer R, Tirrell D A. Designing materials for biologyand medicine. Nature, 2004, 428(6982): 487–492

doi: 10.1038/nature02388
Lutolf M P, Hubbell J A. Synthetic biomaterials asinstructive extracellular microenvironments for morphogenesis in tissueengineering. Nature Biotechnology, 2005, 23(1): 47–55

doi: 10.1038/nbt1055
Liao S, Chan C K, Ramakrishna S. Stem cells and biomimetic materials strategies for tissueengineering. Materials Science and Engineering:C, 2008, 28(8): 1189–1202

doi: 10.1016/j.msec.2008.08.015
McAllister T N, Maruszewski M, Garrido S A. Effectiveness of haemodialysis access with an autologoustissue-engineered vascular graft: a multicentre cohort study. The Lancet, 2009, 373(9673): 1440–1446

doi: 10.1016/S0140-6736(09)60248-8
Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: designing the next generationof tissue engineering scaffolds. AdvancedDrug Delivery Reviews, 2007, 59(14): 1413–1433

doi: 10.1016/j.addr.2007.04.022
Doktycz M J, Simpson M L. Nano-enabled synthetic biology. Molecular Systems Biology, 2007, 3: 125

doi: 10.1038/msb4100165
Wozney J M, Li R H. Engineering what comes naturally. Nature Biotechnology, 2003, 21(5): 506–508

doi: 10.1038/nbt0503-506
Dzenis Y. Spinningcontinuous fibers for nanotechnology. Science, 2004, 304(5679): 1917–1919

doi: 10.1126/science.1099074
Xia Y. Nanomaterialsat work in biomedical research. NatureMaterials, 2008, 7(10): 758–760

doi: 10.1038/nmat2277
Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel. Advanced Materials, 2004, 16(14): 1151–1170

doi: 10.1002/adma.200400719
Townsend-Nicholson A, Jayasinghe S N. Cell electrospinning:?a uniquebiotechnique for encapsulating living organisms for generating activebiological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364–3369

doi: 10.1021/bm060649h
Teo W E, Ramakrishna S. Electrospun fibre bundlemade of aligned nanofibres over two fixed points. Nanotechnology, 2005, 16(9): 1878–1884

doi: 10.1088/0957-4484/16/9/077
Teo W E, Liao S, Chan C K, et al. Remodeling of three-dimensional hierarchicallyorganized nanofibrous assemblies. CurrentNanoscience, 2008, 4(4): 361–369

doi: 10.2174/157341308786306080
Ma K, Chan C K, Liao S, et al. Electrospun nanofiber scaffolds for rapid andrich capture of bone marrow-derived hematopoietic stem cells. Biomaterials, 2008, 29(13): 2096–2103

doi: 10.1016/j.biomaterials.2008.01.024
Chan C K, Liao S, Li B, et al. Early adhesive behavior of bone-marrow-derivedmesenchymal stem cells on collagen electrospun fibers. Biomedical Materials, 2009, 4(3): 035006 (10 pages)
Zeugolis D I, Khew S T, Yew E S Y, et al. Electro-spinning of pure collagen nano-fibres– just an expensive way to make gelatin. Biomaterials, 2008, 29(15): 2293–2305

doi: 10.1016/j.biomaterials.2008.02.009
Guo X-T, Shi M, Shu M-G, et al. Ex vivo expandinghematopoietic stem cells by intracellular delivery of Cdx4 fusionproteins. Medical Hypotheses, 2007, 68(6): 1389–1391

doi: 10.1016/j.mehy.2006.09.068
Jiang X-S, Chai C, Zhang Y, et al. Surface-immobilization of adhesion peptideson substrate for ex vivo expansionof cryopreserved umbilical cord blood CD34+ cells. Biomaterials, 2006, 27(13): 2723–2732

doi: 10.1016/j.biomaterials.2005.12.001
Feng Q, Chai C, Jiang X S, et al. Expansion of engrafting human hematopoieticstem/progenitor cells in three-dimensional scaffolds with surface-immobilizedfibronectin. Journal of Biomedical MaterialsResearch, 2006, 78A(4): 781–791

doi: 10.1002/jbm.a.30829
Chua K N, Chai C, Lee P C, et al. Surface-aminated electrospun nanofibers enhanceadhesion and expansion of human umbilical cord blood hematopoieticstem/progenitor cells. Biomaterials, 2006, 27(36): 6043–6051

doi: 10.1016/j.biomaterials.2006.06.017
Chua K N, Chai C, Lee P C, et al. Functional nanofiber scaffolds with differentspacers modulate adhesion and expansion of cryopreserved umbilicalcord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2007, 35(5): 771–781

doi: 10.1016/j.exphem.2007.02.002
Nur-E-Kamal A, Ahmed I, Kamal J, et al. Three-dimensional nanofibrillar surfaces promoteself-renewal in mouse embryonic stem cells. Stem Cells, 2006, 24(2): 426–433

doi: 10.1634/stemcells.2005-0170
Li W J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymalstem cells in a three-dimensional scaffold. Biomaterials, 2005, 26(25): 5158–5166

doi: 10.1016/j.biomaterials.2005.01.002
Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissueengineering using mesenchymal stem cells on a novel electrospun nanofibrousscaffold. Tissue Engineering, 2004, 10(1–2): 33–41

doi: 10.1089/107632704322791673
Kang X, Xie Y, Powell H M, et al. Adipogenesis of murine embryonic stem cellsin a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28(3): 450–458

doi: 10.1016/j.biomaterials.2006.08.052
Xin X J, Hussain M, Mao J J. Continuing differentiation of human mesenchymal stemcells and induced chondrogenic and osteogenic lineages in electrospunPLGA nanofiber scaffold. Biomaterials, 2007, 28(2): 316–325

doi: 10.1016/j.biomaterials.2006.08.042
Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiationusing nanoscale symmetry and disorder. Nature Materials, 2007, 6(12): 997–1003

doi: 10.1038/nmat2013
Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineagespecification. Cell, 2006, 126(4): 677–689

doi: 10.1016/j.cell.2006.06.044
Sill T J, von-Recum H A. Electrospinning: applicationsin drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006

doi: 10.1016/j.biomaterials.2008.01.011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed