Healthcare and Energy
Materials Laboratory, Department of Mechanical Engineering, Faculty
of Engineering, National University of Singapore, Singapore 117576,
Singapore;
Abstract:Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of the extracellular matrix (ECM) for tissue/organ replacement. Nanofiber scaffolds with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structures. Studies on cell-nanofiber interactions, including studies on stem cells, have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Furthermore, clinical application of electrospun nanofibers including wound healing, tissue regeneration, drug delivery and stem cell therapy are highly feasible due to the ease and flexibility of fabrication of making nanofiber with this cost-effective method using electrospinning. In this review, we have highlighted the current state of the art and provided future perspectives on electrospun nanofiber in medical applications.
. Electrospun nanofibers: Work for medicine?[J]. Front. Mater. Sci., 2010, 4(1): 29-33.
Susan LIAO, Casey K. CHAN, S. RAMAKRISHNA, . Electrospun nanofibers: Work for medicine?. Front. Mater. Sci., 2010, 4(1): 29-33.
Hunt J A. Materials in a cellular world. NatureMaterials, 2008, 7(8): 617–618 doi: 10.1038/nmat2242
Stevens M M, George J H. Exploring and engineeringthe cell surface interface. Science, 310(5751): 1135–1138 doi: 10.1126/science.1106587
Langer R, Tirrell D A. Designing materials for biologyand medicine. Nature, 2004, 428(6982): 487–492 doi: 10.1038/nature02388
Lutolf M P, Hubbell J A. Synthetic biomaterials asinstructive extracellular microenvironments for morphogenesis in tissueengineering. Nature Biotechnology, 2005, 23(1): 47–55 doi: 10.1038/nbt1055
Liao S, Chan C K, Ramakrishna S. Stem cells and biomimetic materials strategies for tissueengineering. Materials Science and Engineering:C, 2008, 28(8): 1189–1202 doi: 10.1016/j.msec.2008.08.015
McAllister T N, Maruszewski M, Garrido S A. Effectiveness of haemodialysis access with an autologoustissue-engineered vascular graft: a multicentre cohort study. The Lancet, 2009, 373(9673): 1440–1446 doi: 10.1016/S0140-6736(09)60248-8
Barnes C P, Sell S A, Boland E D, et al. Nanofiber technology: designing the next generationof tissue engineering scaffolds. AdvancedDrug Delivery Reviews, 2007, 59(14): 1413–1433 doi: 10.1016/j.addr.2007.04.022
Doktycz M J, Simpson M L. Nano-enabled synthetic biology. Molecular Systems Biology, 2007, 3: 125 doi: 10.1038/msb4100165
Wozney J M, Li R H. Engineering what comes naturally. Nature Biotechnology, 2003, 21(5): 506–508 doi: 10.1038/nbt0503-506
Dzenis Y. Spinningcontinuous fibers for nanotechnology. Science, 2004, 304(5679): 1917–1919 doi: 10.1126/science.1099074
Xia Y. Nanomaterialsat work in biomedical research. NatureMaterials, 2008, 7(10): 758–760 doi: 10.1038/nmat2277
Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel. Advanced Materials, 2004, 16(14): 1151–1170 doi: 10.1002/adma.200400719
Townsend-Nicholson A, Jayasinghe S N. Cell electrospinning:?a uniquebiotechnique for encapsulating living organisms for generating activebiological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364–3369 doi: 10.1021/bm060649h
Teo W E, Ramakrishna S. Electrospun fibre bundlemade of aligned nanofibres over two fixed points. Nanotechnology, 2005, 16(9): 1878–1884 doi: 10.1088/0957-4484/16/9/077
Teo W E, Liao S, Chan C K, et al. Remodeling of three-dimensional hierarchicallyorganized nanofibrous assemblies. CurrentNanoscience, 2008, 4(4): 361–369 doi: 10.2174/157341308786306080
Ma K, Chan C K, Liao S, et al. Electrospun nanofiber scaffolds for rapid andrich capture of bone marrow-derived hematopoietic stem cells. Biomaterials, 2008, 29(13): 2096–2103 doi: 10.1016/j.biomaterials.2008.01.024
Chan C K, Liao S, Li B, et al. Early adhesive behavior of bone-marrow-derivedmesenchymal stem cells on collagen electrospun fibers. Biomedical Materials, 2009, 4(3): 035006 (10 pages)
Zeugolis D I, Khew S T, Yew E S Y, et al. Electro-spinning of pure collagen nano-fibres– just an expensive way to make gelatin. Biomaterials, 2008, 29(15): 2293–2305 doi: 10.1016/j.biomaterials.2008.02.009
Guo X-T, Shi M, Shu M-G, et al. Ex vivo expandinghematopoietic stem cells by intracellular delivery of Cdx4 fusionproteins. Medical Hypotheses, 2007, 68(6): 1389–1391 doi: 10.1016/j.mehy.2006.09.068
Jiang X-S, Chai C, Zhang Y, et al. Surface-immobilization of adhesion peptideson substrate for ex vivo expansionof cryopreserved umbilical cord blood CD34+ cells. Biomaterials, 2006, 27(13): 2723–2732 doi: 10.1016/j.biomaterials.2005.12.001
Feng Q, Chai C, Jiang X S, et al. Expansion of engrafting human hematopoieticstem/progenitor cells in three-dimensional scaffolds with surface-immobilizedfibronectin. Journal of Biomedical MaterialsResearch, 2006, 78A(4): 781–791 doi: 10.1002/jbm.a.30829
Chua K N, Chai C, Lee P C, et al. Surface-aminated electrospun nanofibers enhanceadhesion and expansion of human umbilical cord blood hematopoieticstem/progenitor cells. Biomaterials, 2006, 27(36): 6043–6051 doi: 10.1016/j.biomaterials.2006.06.017
Chua K N, Chai C, Lee P C, et al. Functional nanofiber scaffolds with differentspacers modulate adhesion and expansion of cryopreserved umbilicalcord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2007, 35(5): 771–781 doi: 10.1016/j.exphem.2007.02.002
Nur-E-Kamal A, Ahmed I, Kamal J, et al. Three-dimensional nanofibrillar surfaces promoteself-renewal in mouse embryonic stem cells. Stem Cells, 2006, 24(2): 426–433 doi: 10.1634/stemcells.2005-0170
Li W J, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymalstem cells in a three-dimensional scaffold. Biomaterials, 2005, 26(25): 5158–5166 doi: 10.1016/j.biomaterials.2005.01.002
Shin M, Yoshimoto H, Vacanti J P. In vivo bone tissueengineering using mesenchymal stem cells on a novel electrospun nanofibrousscaffold. Tissue Engineering, 2004, 10(1–2): 33–41 doi: 10.1089/107632704322791673
Kang X, Xie Y, Powell H M, et al. Adipogenesis of murine embryonic stem cellsin a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28(3): 450–458 doi: 10.1016/j.biomaterials.2006.08.052
Xin X J, Hussain M, Mao J J. Continuing differentiation of human mesenchymal stemcells and induced chondrogenic and osteogenic lineages in electrospunPLGA nanofiber scaffold. Biomaterials, 2007, 28(2): 316–325 doi: 10.1016/j.biomaterials.2006.08.042
Dalby M J, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiationusing nanoscale symmetry and disorder. Nature Materials, 2007, 6(12): 997–1003 doi: 10.1038/nmat2013
Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineagespecification. Cell, 2006, 126(4): 677–689 doi: 10.1016/j.cell.2006.06.044
Sill T J, von-Recum H A. Electrospinning: applicationsin drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006 doi: 10.1016/j.biomaterials.2008.01.011