1. Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Avenue, Argonne, IL 60439, USA; 2. State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266555, China
Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.
Corresponding Author(s):
SUN Yugang,Email:ygsun@anl.gov
引用本文:
. Shaped gold and silver nanoparticles[J]. Frontiers of Materials Science, 2011, 5(1): 1-24.
Yugang SUN, Changhua AN. Shaped gold and silver nanoparticles. Front Mater Sci, 2011, 5(1): 1-24.
Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition , 2005, 44(48): 7852–7872 doi: 10.1002/anie.200500766
2
Lopez-Acevedo O, Kacprzak K A, Akola J, . Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chemistry , 2010, 2(4): 329–334 doi: 10.1038/nchem.589
3
Fendler J H. Chemical self-assembly for electronic applications. Chemistry of Materials , 2001, 13(10): 3196–3210 doi: 10.1021/cm010165m
4
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science , 2006, 311(5758): 189–193 doi: 10.1126/science.1114849
Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B , 2002, 106(32): 7729–7744 doi: 10.1021/jp0209289
7
Murray C B, Sun S, Doyle H, . Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin , 2001, 26(12): 985–991
8
Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science , 1997, 275(5303): 1102–1106 doi: 10.1126/science.275.5303.1102
9
Dick, L A, McFarland A D, Haynes C L, . Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B , 2001, 106(4): 853–860 doi: 10.1021/jp013638l
10
Li J F, Huang Y F, Ding Y, . Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature , 2010, 464(7287): 392–395 doi: 10.1038/nature08907
11
Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine , 2009, 7(2): 75–91
12
Giljohann D A, Seferos D S, Daniel L, . Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition , 2010, 49(19): 3280–3294
13
Brown C L, Bushell G, Whitehouse M W, . Nanogold-pharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in Swarna bhasma, a microparticulate used in traditional Indian medicine. Gold Bulletin , 2007, 40(3): 245–250
14
Xu R, Wang D, Zhang J, . Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry - An Asian Journal , 2006, 1(6): 888–893 doi: 10.1002/asia.200600260
15
Tian N, Zhou Z, Sun S, . Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science , 2007, 316(5825): 732–735 doi: 10.1126/science.1140484
16
Kelly K L, Coronado E, Zhao L L, . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B , 2002, 107(3): 668–677 doi: 10.1021/jp026731y
17
Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials , 2006, 16(9): 1209–1214 doi: 10.1002/adfm.200600066
18
Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials , 2005, 17(4): 412–415 doi: 10.1002/adma.200401086
19
Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition , 2007, 46(12): 2036–2038 doi: 10.1002/anie.200604637
20
Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics , 2005, 123(11): 114713 (9 pages)
21
Liang H, Wang W, Huang Y, . Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C , 2010, 114(16): 7427–7431 doi: 10.1021/jp9105713
22
Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst , 2003, 128(6): 686–691 doi: 10.1039/b212437h
23
Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews , 2006, 35(3): 209–217 doi: 10.1039/b514191e
24
Xia Y, Xiong Y, Lim B, . Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition , 2009, 48(1): 60–103 doi: 10.1002/anie.200802248
25
Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small , 2008, 4(3): 310–325 doi: 10.1002/smll.200701295
26
Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials , 2010, 22(16): 1781–1804 doi: 10.1002/adma.200901271
27
Grzelczak M, Pérez-Juste J, Mulvaney P, . Shape control in gold nanoparticle synthesis. Chemical Society Reviews , 2008, 37(9): 1783–1791 doi: 10.1039/b711490g
28
Millstone J E, Hurst S J, Metraux G S, . Colloidal gold and silver triangular nanoprisms. Small , 2009, 5(6): 646–664 doi: 10.1002/smll.200801480
29
Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics , 2004, 120(1): 357–366 doi: 10.1063/1.1629280
30
Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence , 2004, 14(4): 331–341 doi: 10.1023/B:JOFL.0000031815.71450.74
31
Jain P K, Lee K S, El-Sayed I H, . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B , 2006, 110(14): 7238–7248 doi: 10.1021/jp057170o
32
Huang X, El-Sayed I H, Qian W, . Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society , 2006, 128(6): 2115–2120 doi: 10.1021/ja057254a
33
Ding H, Yong K-T, Roy I, . Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. The Journal of Physical Chemistry C , 2007, 111(34): 12552–12557 doi: 10.1021/jp0733419
34
Oyelere A K, Chen P C, Huang X, . Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry , 2007, 18(5): 1490–1497 doi: 10.1021/bc070132i
35
Oldenburg A L, Hansen M N, Zweifel D A, . Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optical Express , 2006, 14(15): 6724–6738 doi: 10.1364/OE.14.006724
36
Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials , 2009, 21(48): 4880–4910 doi: 10.1002/adma.200802789
37
Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society , 2005, 127(20): 7632–7637 doi: 10.1021/ja042192u
38
Qin P, Linder M, Brinck T, . High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores. Advanced Materials , 2009, 21(29): 2993–2996 doi: 10.1002/adma.200802461
39
Kelzenberg M D, Boettcher S W, Petykiewicz J A, . Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials , 2010, 9(3): 239–244
40
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials , 2010, 9(3): 205–213 doi: 10.1038/nmat2629
41
Kulkarni A P, Noone K M, Munechika K, . Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Letters , 2010, 10(4): 1501–1505 doi: 10.1021/nl100615e
42
Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. The Journal of Physical Chemistry B , 2000, 104(26): 6095–6098 doi: 10.1021/jp001435b
43
Sanders A W, Routenberg D A, Wiley B J, . Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters , 2006, 6(8): 1822–1826 doi: 10.1021/nl052471v
44
Knight M W, Grady N K, Bardhan R, . Nanoparticle-mediated coupling of light into a nanowire. Nano Letters , 2007, 7(8): 2346–2350 doi: 10.1021/nl071001t
45
Guo X, Qiu M, Bao J, . Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters , 2009, 9(12): 4515–4519 doi: 10.1021/nl902860d
46
Akimov A V, Mukherjee A, Yu C L, . Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature , 2007, 450(7168): 402–406 doi: 10.1038/nature06230
47
Noginov M A, Zhu G, Mayy M, . Stimulated emission of surface plasmon polaritons. Physical Review Letters , 2008, 101(22): 226806 (4 pages)
48
Yan R, Pausauskie P, Huang J, . Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(50): 21045–21050 doi: 10.1073/pnas.0902064106
49
Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science , 2002, 298(5601): 2176–2179 doi: 10.1126/science.1077229
50
Zhang Q, Cobley C, Au L, . Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Applied Materials & Interfaces , 2009, 1(9): 2044–2048 doi: 10.1021/am900400a
51
Zeng J, Zheng Y, Rycenga M, . Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society , 2010, 132(25): 8552–8553 doi: 10.1021/ja103655f
52
Kim F, Connor S, Song H, . Platonic gold nanocrystals. Angewandte Chemie International Edition , 2004, 43(28): 3673–3677 doi: 10.1002/anie.200454216
53
Kundu S, Maheshwari V, Niu S, . Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology , 2008, 19(6): 065604 (5 pages)
54
Huang C-J, Wang Y-H, Chiu P-H, . Electrochemical synthesis of gold nanocubes. Materials Letters , 2006, 60(15): 1896–1900 doi: 10.1016/j.matlet.2005.12.045
55
Zhang Q, Huang C Z, Ling J, . Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde. The Journal of Physical Chemistry B , 2008, 112(51): 16990–16994 doi: 10.1021/jp8081535
56
Zhu J J, Kan C X, Zhu X G G, . Synthesis of perfect silver nanocubes by a simple polyol process. Jouranl of Materials Research , 2007, 22(6): 1479–1485 doi: 10.1557/jmr.2007.0222
57
Habas S E, Lee H, Radmilovic V, . Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials , 2007, 6(9): 692–697 doi: 10.1038/nmat1957
58
Fan F R, Liu D Y, Wu Y F, . Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society , 2008, 130(22): 6949–6951 doi: 10.1021/ja801566d
59
Li C C, Shuford K L, Chen M H, . A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano , 2008, 2(9): 1760–1769 doi: 10.1021/nn800264q
60
Li C C, Shuford K L, Park Q H, . High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition , 2007, 46(18): 3264–3268 doi: 10.1002/anie.200604167
61
Song S, Liu R, Zhang Y, . Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties. Chemistry - A European Journal , 2010, 16(21): 6251–6256 doi: 10.1002/chem.200903279
62
Seo D, Park J C, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society , 2006, 128(46): 14863–14870 doi: 10.1021/ja062892u
63
Zhou J, An J, Tang B, . Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir , 2008, 24(18): 10407–10413 doi: 10.1021/la800961j
64
Tsuji M, Ogino M, Matsuo R, . Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Crystal Growth & Design , 2010, 10(1): 296–301 doi: 10.1021/cg9009042
65
Zheng X L, Zhao X J, Guo D W, . Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir , 2009, 25(6): 3802–3807 doi: 10.1021/la803814j
66
Zhang W, Liu Y, Cao R, . Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. Journal of the American Chemical Society , 2008, 130(46): 15581–15588 doi: 10.1021/ja805606q
67
Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials , 2008, 20(16): 5186–5190 doi: 10.1021/cm800926u
68
Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G, . Environmental optical sensitivity of gold nanodecahedra. Advanced Functional Materials , 2007, 17(9): 1443–1450 doi: 10.1002/adfm.200601071
69
Murphy C J, Gole A M, Hunyadi S E, . One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry , 2006, 45(19): 7544–7554 doi: 10.1021/ic0519382
70
Murphy C J, Sau T K, Gole A M, . Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B , 2005, 109(29): 13857–13870 doi: 10.1021/jp0516846
71
Tao A, Kim F, Hess C, . Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters , 2003, 3(9): 1229–1233 doi: 10.1021/nl0344209
72
Sun Y, Mayers B, Herricks T, . Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters , 2003, 3(7): 955–960 doi: 10.1021/nl034312m
73
Sun Y, Gates B, Mayers B, . Crystalline silver nanowires by soft solution processing. Nano Letters , 2002, 2(2): 165–168 doi: 10.1021/nl010093y
74
Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communication , 2008, 10(7): 1027–1030 doi: 10.1016/j.elecom.2008.03.015
75
N’Gom M, Ringnalda J, Mansfield J F, . Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Letters , 2008, 8(10): 3200–3204 doi: 10.1021/nl801504v
76
Tang X, Tsuji M, Jiang P, . Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 338(1-3): 33–39 doi: 10.1016/j.colsurfa.2008.12.029
77
Wiley B J, Wang Z, Wei J, . Synthesis and electrical characterization of silver nanobeams. Nano Letters , 2006, 6(10): 2273–2278 doi: 10.1021/nl061705n
78
Xue C, Metraux G S, Millstone J E, . Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society , 2008, 130(26): 8337–8344 doi: 10.1021/ja8005258
79
Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters , 2002, 2(9): 1003–1007 doi: 10.1021/nl025674h
80
Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly. The Journal of Physical Chemistry B , 2002, 106(42): 10777–10781 doi: 10.1021/jp026376b
81
Jin R C, Cao Y W, Mirkin C A, . Photoinduced conversion of silver nanospheres to nanoprisms. Science , 2001, 294(5548): 1901–1903 doi: 10.1126/science.1066541
82
Washio I, Xiong Y, Yin Y, . Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials , 2006, 18(13): 1745–1749 doi: 10.1002/adma.200600675
83
Xiong Y, Washio I, Chen J, . Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir , 2006, 22(20): 8563–8570 doi: 10.1021/la061323x
84
Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir , 2008, 24(18): 10437–10442 doi: 10.1021/la801803z
85
Xiong Y J, Siekkinen A R, Wang J G, . Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry , 2007, 17(25): 2600–2602 doi: 10.1039/b705253g
86
Cao Z W, Fu H B, Kang L T, . Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry , 2008, 18(23): 2673–2678 doi: 10.1039/b800691a
87
Zhao N, Wei Y, Sun N, . Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir , 2008, 24(3): 991–998 doi: 10.1021/la702848x
88
Li L, Wang Z, Huang T, . Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir , 2010, 26(14): 12330–12335 doi: 10.1021/la1015737
89
Bai J, Qin Y, Jiang C, . Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chemistry of Materials , 2007, 19(14): 3367–3369 doi: 10.1021/cm0707861
90
Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. The Journal of Physical Chemistry C , 2008, 112(10): 3460–3463 doi: 10.1021/jp7117967
91
Im S H, Lee Y T, Wiley B, . Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition , 2005, 44(14): 2154–2157 doi: 10.1002/anie.200462208
92
Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition , 2006, 45(28): 4597–4601 doi: 10.1002/anie.200601277
93
Wiley B, Herricks T, Sun Y, . Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters , 2004, 4(9): 1733–1739 doi: 10.1021/nl048912c
94
Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the Amercian Chemical Society , 2004, 126(41): 13200–13201 doi: 10.1021/ja046037r
95
Skrabalak S E, Au L, Li X, . Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols , 2007, 2(9): 2182–2190 doi: 10.1038/nprot.2007.326
96
Siekkinen A R, McLellan J M, . Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters , 2006, 432(4-6): 491–496 doi: 10.1016/j.cplett.2006.10.095
97
Wiley B J, Chen Y C, McLellan J M, . Synthesis and optical properties of silver nanobars and nanorice. Nano Letters , 2007, 7(4): 1032–1036 doi: 10.1021/nl070214f
98
Mulvihill M J, Ling X Y, Henzie J, . Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. Journal of the American Chemical Society , 2009, 132(1): 268–274 doi: 10.1021/ja906954f
99
Wu X, Redmond P L, Liu H, . Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society , 2008, 130(29): 9500–9506 doi: 10.1021/ja8018669
100
Mackay A L. A dense non-crystalloraphic packing of equal spheres. Acta Crystallography , 1962, 15: 916–918 doi: 10.1107/S0365110X6200239X
101
Zhang Q, Xie J, Yang J, . Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano , 2009, 3(1): 139–148 doi: 10.1021/nn800531q
102
Peng S, McMahon J M, Schatz G C, . Reversing the size-dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(33): 14530–14534 doi: 10.1073/pnas.1007524107
103
Xu J, Li S, Weng J, . Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Advanced Functional Materials , 2008, 18(2): 277–284 doi: 10.1002/adfm.200700123
104
Lu X, Tuan H-Y, Korgel B A, . Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry - A European Journal , 2008, 14(5): 1584–1591 doi: 10.1002/chem.200701570
105
Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry - A European Journal , 2009, 15(47): 13181–13187 doi: 10.1002/chem.200901440
106
Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, . Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials , 2006, 18(19): 2529–2534 doi: 10.1002/adma.200600475
107
Gao Y, Jiang P, Song L, . Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth , 2006, 289(1): 376–380 doi: 10.1016/j.jcrysgro.2005.11.123
108
Zheng X, Xu W, Corredor C, . Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. The Journal of Physical Chemistry C , 2007, 111(41): 14962–14967 doi: 10.1021/jp074583b
109
Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society , 2010, 132(6): 1825–1827 doi: 10.1021/ja910010b
110
Gao Y, Jiang P, Liu D F, . Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. The Journal of Physical Chemistry B , 2004, 108(34): 12877–12881 doi: 10.1021/jp037116c
111
Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications , 2001, (7): 617–618 doi: 10.1039/b100521i
Lucas M, Leach A M, McDowell M T, . Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Reviews B , 2008, 77(24): 245420 (4 pages)
114
Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir , 2005, 21(8): 3334–3337 doi: 10.1021/la046807c
115
Zhang S, Jiang Z, Xie Z, . Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. The Journal of Physical Chemistry B , 2005, 109(19): 9416–9421 doi: 10.1021/jp0441036
116
Kim S H, Choi B S, Kang K, . Low temperature synthesis and growth mechanism of Ag nanowires. Journal of Alloys and Compounds , 2007, 433(1-2): 261–264 doi: 10.1016/j.jallcom.2006.06.053
117
Zheng X, Zhu L, Yan A, . Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid & Interface Science , 2003, 268(2): 357–361 doi: 10.1016/j.jcis.2003.09.021
118
Zhou G, Lu M, Yang Z, . Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth , 2006, 289(1): 255–259 doi: 10.1016/j.jcrysgro.2005.11.106
119
Pietrobon B, McEachran M, Kitaev V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano , 2009, 3(1): 21–26 doi: 10.1021/nn800591y
120
Seo D, Yoo C I, Jung J, . Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth. Journal of the American Chemical Society , 2008, 130(10): 2940–2941 doi: 10.1021/ja711093j
Sun Y, Yin Y, Mayers B T, . Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials , 2002, 14(11): 4736–4745 doi: 10.1021/cm020587b
123
Jin R, Charles Cao Y, Hao E, . Controlling anisotropic nanoparticle growth through plasmon excitation. Nature , 2003, 425(6957): 487–490 doi: 10.1038/nature02020
124
An J, Tang B: Ning X, . Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. The Journal of Physical Chemistry C , 2007, 111(49): 18055–18059 doi: 10.1021/jp0745081
125
Zhang Q, Ge J, Pham T, . Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angewandte Chemie International Edition , 2009, 48(19): 3516–3519 doi: 10.1002/anie.200900545
Yener D O, Sindel J, Randall C A, . Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir , 2002, 18(22): 8692–8699 doi: 10.1021/la011229a
128
Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF. Nano Letters , 2002, 2(8): 903–905 doi: 10.1021/nl025638i
129
Pastoriza-Santos I, Liz-Marzán L M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Advanced Functioanl Materials , 2009, 19(5): 679–688 doi: 10.1002/adfm.200801566
130
Malikova N, Pastoriza-Santos I, Schierhorn M, . Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir , 2002, 18(9): 3694–3697 doi: 10.1021/la025563y
131
Millstone J E, Park S, Shuford K L, . Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society , 2005, 127(15): 5312–5313 doi: 10.1021/ja043245a
132
Shankar S S, Rai A, Ahmad A, . Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials , 2005, 17(3): 566–572 doi: 10.1021/cm048292g
133
Tsuji M, Hashimoto M, Nishizawa Y, . Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal , 2005, 11(2): 440–452 doi: 10.1002/chem.200400417
134
Li C, Cai W, Li Y, . Ultrasonically induced Au nanoprisms and their size manipulation based on aging. The Journal of Physical Chemistry B , 2006, 110(4): 1546–1552 doi: 10.1021/jp055522l
135
Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters , 2003, 3(5): 675–679 doi: 10.1021/nl034140t
136
Zhang J, Liu H, Wang Z, . Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters , 2007, 91(13): 133112 (3 pages)
137
Zheng H, Smith R K, Jun Y-W, . Observation of single colloidal platinum nanocrystal growth trajectories. Science , 2009, 324(5932): 1309–1312 doi: 10.1126/science.1172104
138
Abécassis B, Testard F, Spalla O, . Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Letters , 2007, 7(6): 1723–1727 doi: 10.1021/nl0707149
139
Polte J, Erler R, Thunemann A F, . Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano , 2010, 4(2): 1076–1082 doi: 10.1021/nn901499c
140
Chen C-H, Sarma L S, Chen J-M, . Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS Nano , 2007, 1(2): 114–125 doi: 10.1021/nn700021x
141
Harada M, Inada Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir , 2009, 25(11): 6049–6061 doi: 10.1021/la900550t
142
Cheong S, Watt J, Ingham B, . In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. Journal of the American Chemical Society , 2009, 131(40): 14590–14595 doi: 10.1021/ja9065688
143
Middelkoop V, Boldrin P, Peel M, . Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chemistry of Materials , 2009, 21(12): 2430–2435 doi: 10.1021/cm900118z
144
Bremholm M, Felicissimo M, Iversen B B. Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angewandte Chemie International Edition , 2009, 48(26): 4788–4791 doi: 10.1002/anie.200901048
145
Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved in situ synchrotron X-ray diffraction. Advanced Materials , 2009, 21(35): 3572–3575 doi: 10.1002/adma.200803431
146
Park S Y, Lytton-Jean A K R, Lee B, . DNA-programmable nanoparticle crystallization. Nature , 2008, 451(7178): 553–556 doi: 10.1038/nature06508
147
Shevchenko E V, Talapin D V, Kotov N A, . Structural diversity in binary nanoparticle superlattices. Nature , 2006, 439(7072): 55–59 doi: 10.1038/nature04414
148
Li W Y, Camargo P H C, Au L, . Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie International Edition , 2010, 49(1): 164–168
149
Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology , 2007, 2(7): 435–440 doi: 10.1038/nnano.2007.189
150
Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation. ACS Nano , 2009, 3(8): 2129–2138 doi: 10.1021/nn9005895
151
Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angewandte Chemie International Edition , 2009, 48(50): 9484–9488 doi: 10.1002/anie.200904118
Nykypanchuk D, Maye M M, van der Lelie D, . DNA-guided crystallization of colloidal nanoparticles. Nature , 2008, 451(7178): 549–552 doi: 10.1038/nature06560