Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method
Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method
R. ELILARASSI(), G. CHANDRASEKARAN
Magnetism and Nanomagnetic Materials Lab, Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry 605014, India
Nanocrystalline Zn1-xCuxO (x = 0, 0.02, 0.04, 0.06, 0.08) samples were synthesized by a novel auto-combustion method using glycine as the fuel material. The structural, optical and magnetic properties of the samples were characterized using XRD, SEM, photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies. The XRD spectra of samples reveal the hexagonal wurtzite structures of ZnO. As the copper content increases, a diffraction peak at 2θ = 39° corresponding to secondary phase of CuO ([111] crystalline face) appears when x≤6 mol.%. PL spectra of the samples show a strong ultraviolet (UV) emission and defect related visible emissions. Cu-doping in ZnO can effectively adjust the energy level in ZnO, which leads to red shift in the emission peak position in UV region. The EPR spectra of Cu-doped ZnO nanoparticles show a distinct and broad signal at room temperature, suggesting that it may be attributed to the exchange interactions within Cu2+ ions.
. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method[J]. Frontiers of Materials Science, 2013, 7(2): 196-201.
R. ELILARASSI, G. CHANDRASEKARAN. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Front Mater Sci, 2013, 7(2): 196-201.
Norris D J, Yao N, Charnock F T, . High-quality manganese-doped ZnSe nanocrystals. Nano Letters , 2001, 1(1): 3-7
2
Zhang Q X, Yu K, Bai W, . Synthesis, optical and field emission properties of three different ZnO nanostructures. Materials Letters , 2007, 61(18): 3890-3892
3
Lieber C M. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications , 1998, 107(11): 607-616
4
Ryu Y, Lee T-S, Lubguban J A, . Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters , 2006, 88(24): 241108 (3 pages)
5
Law M, Greene L E, Johnson J C, . Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459
6
Sima M, Enculescu I, Sima M, . ZnO:Mn:Cu nanowires prepared by template method. physica status solidi (b) , 2007, 244(5): 1522-1527
7
Wang Y S, Thomas P J, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. The Journal of Physical Chemistry B , 2006, 110(43): 21412-21415
8
Park Y R, Choi S L, Lee J H, . Ferromagnetic properties of Ni-doped rutile TiO2-δ. Journal of the Korean Physical Society , 2007, 50(3): 638-642
9
LiuC, Yun F, Morko? H. Ferromagnetism of ZnO and GaN: A review. Journal of Materials Science: Materials in Electronics , 2005, 16(9) 555-597
10
Huang L M, Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(7): 075206 (6 pages)
11
Bhargava R N, Chhabra V, Som T, . Quantum confined atoms of doped ZnO nanocrystals. physica status solidi (b) , 2002, 229(2): 897-901
12
Chakraborti D, Ramachandran S, Trichy G, . Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics , 2007, 101(5): 053918 (7 pages)
13
Ni Y H, Cao X F, Wu G G, . Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology , 2007, 18(15): 155603 (4 pages)
14
Jimenez-Gonzalez A E. Modification of ZnO thin films by Ni, Cu, and Cd doping. Journal of Solid State Chemistry , 1997, 128(2): 176-180
15
Lee H-J, Kim B-S, Cho C R, . A study of magnetic and optical properties of Cu-doped ZnO. physica status solidi (b) , 2004, 241(7): 1533-1536
16
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography , 1976, 32: 751-767
17
Wang H, Wang H B, Yang F J, . Structure and magnetic properties of Zn1-xCoxO single-crystalline nanorods synthesized by a wet chemical method. Nanotechnology , 2006, 17(17): 4312-4316
18
Li C, Fang G, Fu Q, . Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. Journal of Crystal Growth , 2006, 292(1): 19-25
19
Sun Y, Ndifor-Angwafor N G, Riley D J, . Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters , 2006, 431(4-6): 352-357
20
Ryu Y R, Zhu S, Budai J D, . Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. Journal of Applied Physics , 2000, 88(1): 201-204
21
Chen Y, Hong K, Ko H J, . Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates. Applied Physics Letters , 2000, 76(2): 245-247
22
Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications , 2004, 132(3-4): 269-271
23
Vanheusden K, Warren W L, Seager C H, . Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics , 1996, 79(10): 7983-7990
24
Korsunska N O, Borkovska L V, Bulakh B M, . The influence of defect drift in external electric field on green luminescence of ZnO single crystals. Journal of Luminescence , 2003, 102-103: 733-736
25
Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B , 1998, 102(16): 2854-2862
26
Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters , 2002, 81(4): 757-759
27
Xu C X, Sun X W, Zhang X H, . Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology , 2004, 15(7): 856-861
28
Vlasenko L. Point defects in ZnO: Electron paramagnetic resonance study. Physica B: Condensed Matter , 2009, 404(23-24): 4774-4778
29
Liu W K, Whitaker K M, Smith A L, . Room-temperature electron spin dynamics in free-standing ZnO quantum dots. Physical Review Letters , 2007, 98(18): 186804 (4 pages)
30
Kannappan R, Mahalakshmy R, Rajendiran T M, . Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol. Journal of Chemical Sciences , 2003, 115(1): 1-14
31
Viswanatha R, Chakraborty S, Basu S, . Blue-emitting copper-doped zinc oxide nanocrystals. The Journal of Physical Chemistry B , 2006, 110(45): 22310-22312