Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2013, Vol. 7 Issue (2): 196-201   https://doi.org/10.1007/s11706-013-0198-4
  COMMUNICATION 本期目录
Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method
Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method
R. ELILARASSI(), G. CHANDRASEKARAN
Magnetism and Nanomagnetic Materials Lab, Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry 605014, India
 全文: PDF(197 KB)   HTML
Abstract

Nanocrystalline Zn1-xCuxO (x = 0, 0.02, 0.04, 0.06, 0.08) samples were synthesized by a novel auto-combustion method using glycine as the fuel material. The structural, optical and magnetic properties of the samples were characterized using XRD, SEM, photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies. The XRD spectra of samples reveal the hexagonal wurtzite structures of ZnO. As the copper content increases, a diffraction peak at 2θ = 39° corresponding to secondary phase of CuO ([111] crystalline face) appears when x6 mol.%. PL spectra of the samples show a strong ultraviolet (UV) emission and defect related visible emissions. Cu-doping in ZnO can effectively adjust the energy level in ZnO, which leads to red shift in the emission peak position in UV region. The EPR spectra of Cu-doped ZnO nanoparticles show a distinct and broad signal at room temperature, suggesting that it may be attributed to the exchange interactions within Cu2+ ions.

Key wordsCu-doped ZnO    auto-combustion    luminescence    electron paramagnetic resonance (EPR)
收稿日期: 2012-11-27      出版日期: 2013-06-05
Corresponding Author(s): ELILARASSI R.,Email:ezhil1984_r@yahoo.co.uk   
 引用本文:   
. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method[J]. Frontiers of Materials Science, 2013, 7(2): 196-201.
R. ELILARASSI, G. CHANDRASEKARAN. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Front Mater Sci, 2013, 7(2): 196-201.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-013-0198-4
https://academic.hep.com.cn/foms/CN/Y2013/V7/I2/196
Fig.1  
Fig.2  
Copper concentration, xParticle size /nmLattice parameters
a /?c /?
0.0246.973.2527±0.00175.2096±0.0005
0.0443.143.2545±0.00355.2128±0.0008
0.0639.053.2509±0.00205.2087±0.0006
0.0822.213.2531±0.00325.2136±0.0009
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Copper concentration, xg-valueLinewidth, GSpin–spin relaxation time, t /(10-10 s)
0.022.296836.3750.774
0.042.289537.5000.764
0.062.287138.1250.752
0.082.284740.0000.717
Tab.2  
1 Norris D J, Yao N, Charnock F T, . High-quality manganese-doped ZnSe nanocrystals. Nano Letters , 2001, 1(1): 3-7
2 Zhang Q X, Yu K, Bai W, . Synthesis, optical and field emission properties of three different ZnO nanostructures. Materials Letters , 2007, 61(18): 3890-3892
3 Lieber C M. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications , 1998, 107(11): 607-616
4 Ryu Y, Lee T-S, Lubguban J A, . Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters , 2006, 88(24): 241108 (3 pages)
5 Law M, Greene L E, Johnson J C, . Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459
6 Sima M, Enculescu I, Sima M, . ZnO:Mn:Cu nanowires prepared by template method. physica status solidi (b) , 2007, 244(5): 1522-1527
7 Wang Y S, Thomas P J, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. The Journal of Physical Chemistry B , 2006, 110(43): 21412-21415
8 Park Y R, Choi S L, Lee J H, . Ferromagnetic properties of Ni-doped rutile TiO2-δ. Journal of the Korean Physical Society , 2007, 50(3): 638-642
9 LiuC, Yun F, Morko? H. Ferromagnetism of ZnO and GaN: A review. Journal of Materials Science: Materials in Electronics , 2005, 16(9) 555-597
10 Huang L M, Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(7): 075206 (6 pages)
11 Bhargava R N, Chhabra V, Som T, . Quantum confined atoms of doped ZnO nanocrystals. physica status solidi (b) , 2002, 229(2): 897-901
12 Chakraborti D, Ramachandran S, Trichy G, . Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics , 2007, 101(5): 053918 (7 pages)
13 Ni Y H, Cao X F, Wu G G, . Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology , 2007, 18(15): 155603 (4 pages)
14 Jimenez-Gonzalez A E. Modification of ZnO thin films by Ni, Cu, and Cd doping. Journal of Solid State Chemistry , 1997, 128(2): 176-180
15 Lee H-J, Kim B-S, Cho C R, . A study of magnetic and optical properties of Cu-doped ZnO. physica status solidi (b) , 2004, 241(7): 1533-1536
16 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography , 1976, 32: 751-767
17 Wang H, Wang H B, Yang F J, . Structure and magnetic properties of Zn1-xCoxO single-crystalline nanorods synthesized by a wet chemical method. Nanotechnology , 2006, 17(17): 4312-4316
18 Li C, Fang G, Fu Q, . Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. Journal of Crystal Growth , 2006, 292(1): 19-25
19 Sun Y, Ndifor-Angwafor N G, Riley D J, . Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters , 2006, 431(4-6): 352-357
20 Ryu Y R, Zhu S, Budai J D, . Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. Journal of Applied Physics , 2000, 88(1): 201-204
21 Chen Y, Hong K, Ko H J, . Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates. Applied Physics Letters , 2000, 76(2): 245-247
22 Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications , 2004, 132(3-4): 269-271
23 Vanheusden K, Warren W L, Seager C H, . Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics , 1996, 79(10): 7983-7990
24 Korsunska N O, Borkovska L V, Bulakh B M, . The influence of defect drift in external electric field on green luminescence of ZnO single crystals. Journal of Luminescence , 2003, 102-103: 733-736
25 Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B , 1998, 102(16): 2854-2862
26 Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters , 2002, 81(4): 757-759
27 Xu C X, Sun X W, Zhang X H, . Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology , 2004, 15(7): 856-861
28 Vlasenko L. Point defects in ZnO: Electron paramagnetic resonance study. Physica B: Condensed Matter , 2009, 404(23-24): 4774-4778
29 Liu W K, Whitaker K M, Smith A L, . Room-temperature electron spin dynamics in free-standing ZnO quantum dots. Physical Review Letters , 2007, 98(18): 186804 (4 pages)
30 Kannappan R, Mahalakshmy R, Rajendiran T M, . Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol. Journal of Chemical Sciences , 2003, 115(1): 1-14
31 Viswanatha R, Chakraborty S, Basu S, . Blue-emitting copper-doped zinc oxide nanocrystals. The Journal of Physical Chemistry B , 2006, 110(45): 22310-22312
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed