1. State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; 2. Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
In the past decade, nanopores have been developed extensively for various potential applications, and their performance greatly depends on the surface properties of the nanopores. Atomic layer deposition (ALD) is a new technology for depositing thin films, which has been rapidly developed from a niche technology to an established method. ALD films can cover the surface in confined regions even in nanoscale conformally, thus it is proved to be a powerful tool to modify the surface of the synthetic nanopores and also to fabricate complex nanopores. This review gives a brief introduction on nanopore synthesis and ALD fundamental knowledge, and then focuses on the various aspects of synthetic nanopores processing by ALD and their applications, including single-molecule sensing, nanofluidic devices, nanostructure fabrication and other applications.
. Surface engineering of synthetic nanopores by atomic layer deposition and their applications[J]. Frontiers of Materials Science, 2013, 7(4): 335-349.
Ce-Ming WANG, De-Lin KONG, Qiang CHEN, Jian-Ming XUE. Surface engineering of synthetic nanopores by atomic layer deposition and their applications. Front Mater Sci, 2013, 7(4): 335-349.
Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nature Nanotechnology , 2011, 6(10): 615–624
2
Branton D, Deamer D W, Marziali A, . The potential and challenges of nanopore sequencing. Nature Biotechnology , 2008, 26(10): 1146–1153
3
Dekker C. Solid-state nanopores. Nature Nanotechnology , 2007, 2(4): 209–215
4
Chen P, Mitsui T, Farmer D B, . Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters , 2004, 4(7): 1333–1337
5
Venkatesan B M, Dorvel B, Yemenicioglu S, . Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Advanced Materials , 2009, 21(27): 2771–2776
6
Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics. Reviews of Modern Physics , 2008, 80(3): 839–883
7
Karnik R, Fan R, Yue M, . Electrostatic control of ions and molecules in nanofluidic transistors. Nano Letters , 2005, 5(5): 943–948
8
Cheng L J, Guo L J. Nanofluidic diodes. Chemical Society Reviews , 2010, 39(3): 923–938
9
Martin C R. Nanomaterials: a membrane-based synthetic approach. Science , 1994, 266(5193): 1961–1966
10
George S M. Atomic layer deposition: an overview. Chemical Reviews , 2010, 110(1): 111–131
11
Puurunen R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics , 2005, 97(12): 121301 (52 pages)
12
Elam J W, Routkevitch D, Mardilovich P P, . Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chemistry of Materials , 2003, 15(18): 3507–3517
13
Gordon R G, Hausmann D, Kim E, . A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches. Chemical Vapor Deposition , 2003, 9(2): 73–78
14
Cameron M A, Gartland I P, Smith J A, . Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: pore reduction and effect of surface species on gas transport. Langmuir , 2000, 16(19): 7435–7444
15
Rhee M, Burns M A. Nanopore sequencing technology: research trends and applications. Trends in Biotechnology , 2006, 24(12): 580–586
16
Li J, Stein D, McMullan C, . Ion-beam sculpting at nanometre length scales. Nature , 2001, 412(6843): 166–169
17
Stein D, Li J, Golovchenko J A. Ion-beam sculpting time scales. Physical Review Letters , 2002, 89(27): 276106 (4 pages)
18
Storm A J, Chen J H, Ling X S, . Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials , 2003, 2(8): 537–540
19
Storm A J, Chen J H, Ling X S, . Electron-beam-induced deformations of SiO2 nanostructures. Journal of Applied Physics , 2005, 98(1): 014307 (8 pages)
20
Krapf D, Wu M Y, Smeets R M M, . Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Letters , 2006, 6(1): 105–109
21
Fischer B E, Spohr R. Production and use of nuclear tracks: imprinting structure on solids. Reviews of Modern Physics , 1983, 55(4): 907–948
22
Wang C M, Wang L, Zhu X R, . Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. Lab on a Chip , 2012, 12(9): 1710–1716
23
Spohr R. Method for producing nuclear traces or microholes originating from nuclear traces of an individual ion. US Patent , 4369370, 1983
24
Apel P Y, Korchev Y E, Siwy Z, . Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms , 2001, 184(3): 337–346
25
Stroeve P, Ileri N. Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology , 2011, 29(6): 259–266
Smeets R M M, Keyser U F, Dekker N H, . Noise in solid-state nanopores. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(2): 417–421
28
Venkatesan B M, Shah A B, Zuo J-M, . DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Advanced Functional Materials , 2010, 20(8): 1266–1275
29
Kasianowicz J J, Brandin E, Branton D, . Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America , 1996, 93(24): 13770–13773
30
Chen Z, Jiang Y, Dunphy D R, . DNA translocation through an array of kinked nanopores. Nature Materials , 2010, 9(8): 667–675
31
Nam S-W, Rooks M J, Kim K-B, . Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Letters , 2009, 9(5): 2044–2048
32
Nam S-W, Lee M-H, Lee S-H, . Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. Nano Letters , 2010, 10(9): 3324–3329
33
Li F, Li L, Liao X, . Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. Journal of Membrane Science , 2011, 385–386: 1–9
34
Elam J W, Xiong G, Han C Y, . Atomic layer deposition for the conformal coating of nanoporous materials. Journal of Nanomaterials , 2006, 64501 (5 pages)
35
Grigoras K, Airaksinen V M, Franssila S. Coating of nanoporous membranes: atomic layer deposition versus sputtering. Journal of Nanoscience and Nanotechnology , 2009, 9(6): 3763–3770
36
Pardon G, Gatty H K, Stemme G, . Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores. Nanotechnology , 2013, 24(1): 015602
37
Knez M, Nielsch K, Niinist? L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials , 2007, 19(21): 3425–3438
38
Sander M S, C?té M J, Gu W, . Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Advanced Materials , 2004, 16(22): 2052–2057
39
Yang C J, Wang S M, Liang S W, . Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition. Applied Physics Letters , 2007, 90(3): 033104 (3 pages)
40
Tan L K, Chong A S M, Tang X S E, . Combining atomic layer deposition with a template-assisted approach to fabricate size-reduced nanowire arrays on substrates and their electrochemical characterization. Journal of Physical Chemistry C , 2007, 111(13): 4964–4968
41
Shin H, Jeong D K, Lee J, . Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Advanced Materials , 2004, 16(14): 1197–1200
42
VanDersarl J J, Xu A M, Melosh N A. Nanostraws for direct fluidic intracellular access. Nano Letters , 2012, 12(8): 3881–3886
43
Banerjee P, Perez I, Henn-Lecordier L, . Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nature Nanotechnology , 2009, 4(5): 292–296