Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2014, Vol. 8 Issue (1): 87-94   https://doi.org/10.1007/s11706-014-0240-1
  本期目录
Use of mineralized collagen bone graft substitutes and dorsal locking plate in treatment of elder metaphyseal comminuted distal radius fracture
Ke-Bin LIU1,Kui HUANG1,Yu TENG2,Yan-Zheng QU3,Wei CUI3,Zhen-Fei HUANG3,Ting-Fang SUN3,Xiao-Dong GUO3,*()
1. Department of Orthopaedics, The First People Hospital of Jingzhou, Yangtze University, Jingzhou 434000, China
2. Department of Orthopaedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
3. Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
 全文: PDF(285 KB)   HTML
Abstract

Bone graft may be needed to fill bone defect in elderly patients with a metaphyseal comminuted distal radius fracture. In this retrospective, nonrandomized, single-surgeon study, we evaluated the clinical and radiologic outcomes of using both dorsal locking plates with or without augmentation with mineralized collagen (MC) bone graft for elderly patients with dorsally metaphyseal comminuted radius fractures. Patients in group 1 (n = 12) were treated with dorsal locking plates with MC bone graft application into the metaphyseal bone defect, and those in group 2 (n = 12) only with dorsal locking plates. Clinical and radiologic parameters were determined at three and 12 months after surgery. At final follow-up, no significant difference was noted between the 2 groups in terms of palmar tilt and radial inclination (p = 0.80); however, ulnar variance increased significantly in the group 2 treated with dorsal locking plates without augmentation (p<0.05). Functionally, there was no significant difference between the groups. Our preliminary study suggests that combination of MC as bone-graft substitutes and dorsal locking plates may be a usefully alternative for elderly patients with metaphyseal comminuted distal radius fracture.

Key wordscomminuted distal radius fracture    bone graft    augmentation
收稿日期: 2014-02-07      出版日期: 2014-06-24
Corresponding Author(s): Xiao-Dong GUO   
 引用本文:   
. [J]. Frontiers of Materials Science, 2014, 8(1): 87-94.
Ke-Bin LIU,Kui HUANG,Yu TENG,Yan-Zheng QU,Wei CUI,Zhen-Fei HUANG,Ting-Fang SUN,Xiao-Dong GUO. Use of mineralized collagen bone graft substitutes and dorsal locking plate in treatment of elder metaphyseal comminuted distal radius fracture. Front. Mater. Sci., 2014, 8(1): 87-94.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-014-0240-1
https://academic.hep.com.cn/foms/CN/Y2014/V8/I1/87
Fig.1  
Group and p valueAgeGender(male:female)Hand dominance(right:left)AO/ASIFInterval to operation /dSurgery time /min
Group 1(n = 12)63 (56–67)5:78:4C2:6C3:65.2 (3–8)86 (60–105)
Group 2(n = 12)62 (55–65)6:67:5C2:7C3:54.8 (4–7)82 (56–108)
p value0.350.150.210.130.100.14
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Group No.Patient No.Flexion /(° )Extension /(° )Radial deviatiot /(° )Ulnar devaiton /(° )Pronation /(° )Supination /(° )Grip strength /%Score resulta)
Group 1130301510606070F
260804031909583G
340502015809078G
445653518857583G
570703825847579G
680752026756582G
765453527807090G
855451822778584G
960553620859092E
1070652025758088E
1155753525806094E
1265704030858090E
Group 2150802515858568F
260403725907590G
355552422809079G
465603014857871F
550653520788076G
670702522807890E
745403027858589E
850452825708092E
955503526687586G
1060652027867088G
1165604022707592E
1245702025806094E
Tab.2  
CTcomputed tomography
HAhydroxyapatite
MCmineralized collagen
nHACnano-hydroxyapatite/collagen
PLApoly (lactic acid)
Tab.3  
1 Diaz-GarciaR J, OdaT, ShauverM J, A systematic review of outcomes and complications of treating unstable distal radius fractures in the elderly. Journal of Hand Surgery (American Volume), 2011, 36(5): 824–835, e2
2 KovalK J, HarrastJ J, AnglenJ O, Fractures of the distal part of the radius. The evolution of practice over time. Where’s the evidence? The Journal of Bone and Joint Surgery (American Volume), 2008, 90(9): 1855–1861
3 SzaboR M, WeberS C. Comminuted intraarticular fractures of the distal radius. Clinical Orthopaedics and Related Research, 1988, (230): 39–48
4 HollevoetN, VerdonkR, KaufmanJ M, Osteoporotic fracture treatment. Acta Orthopaedica Belgica, 2011, 77(4): 441–447
5 GreenwaldA S, BodenS D, GoldbergV M, Bone-graft substitutes: facts, fictions, and applications. The Journal of Bone and Joint Surgery (American Volume), 2001, 83(2, suppl 2): S98–103
6 JoshiA, KostakisG C. An investigation of post-operative morbidity following iliac crest graft harvesting. British Dental Journal, 2004, 196(3): 167–171, discussion 155
7 HartiganB J, CohenM S. Use of bone graft substitutes and bioactive materials in treatment of distal radius fractures. Hand Clinics, 2005, 21(3): 449–454
8 BrydoneA S, MeekD, MaclaineS. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(12): 1329–1343
9 YuX, XuL, CuiF Z, Clinical evaluation of mineralized collagen as a bone graft substitute for anterior cervical intersomatic fusion. Journal of Biomaterials and Tissue Engineering, 2012, 2(2): 170–176
10 LiJ, HongJ, ZhengQ, Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. Journal of Orthopaedic Research, 2011, 29(11): 1745–1752
11 LiaoS S, CuiF Z, ZhangW, Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 69B(2): 158–165
12 MüllerM E, KochP, NazarianS, The Comprehensive Classification of Fractures of Long Bones. Berlin: Springer-Verlag, 1990
13 GartlandJ J Jr, WerleyC W. Evaluation of healed Colles’ fractures. The Journal of Bone and Joint Surgery (American Volume), 1951, 33(4): 895–907
14 FlinkkiläT, Nikkola-SihtoA, RaatikainenT, Role of metaphyseal cancellous bone defect size in secondary displacement in Colles’ fracture. Archives of Orthopaedic and Trauma Surgery, 1999, 119(5–6): 319–323
15 RogachefskyR A, OuelletteE A, SunS, The use of tricorticocancellous bone graft in severely comminuted intra-articular fractures of the distal radius. The Journal of Hand Surgery, 2006, 31(4): 623–632
16 AxelrodT S, McMurtryR Y. Open reduction and internal fixation of comminuted, intraarticular fractures of the distal radius. The Journal of Hand Surgery, 1990, 15(1): 1–11
17 BoyceT, EdwardsJ, ScarboroughN. Allograft bone. The influence of processing on safety and performance. The Orthopedic Clinics of North America, 1999, 30(4): 571–581
18 NelsonC, MaggeA, BernardT S T, Nanostructured composites for bone repair. Journal of Biomaterials and Tissue Engineering, 2013, 3(4): 426–439
19 ChanC K, KumarT S S, LiaoS, Biomimetic nanocomposites for bone graft applications. Nanomedicine, 2006, 1(2): 177–188
20 LiJ, LiZ, ZhengQ, Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen. Materials Science and Engineering C, 2010, 30(8): 1272–1279
21 DuC, CuiF Z, ZhangW, Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of Biomedical Materials Research, 2000, 50(4): 518–527
22 YuX, XuL, CuiF Z, Clinical evaluation of mineralized collagen as a bone graft substitute for anterior cervical intersomatic fusion. Journal of Biomaterials and Tissue Engineering, 2012, 2(2): 170–176
23 LianK, LuH, GuoX, The mineralized collagen for the reconstruction of intra-articular calcaneal fractures with trabecular defects. Biomatter, 2013, 3(4): e27250
24 LinZ Y, DuanZ X, GuoX D, Bone induction by biomimetic PLGA–(PEG–ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. Journal of Controlled Release, 2010, 144(2): 190–195
25 GuoX, ZhengQ, DuJ, Biodegradation and mechanical properties of hydroxyapatite/poly-DL-lactide composites for fracture fixation. Journal of Wuhan University of Technology (Materials Science Edition), 1998, 13(4): 9–15
26 DuanZ, ZhengQ, GuoX, Repair of rabbit femoral defects with a novel BMP2-derived oligopeptide P24. Journal of Huazhong University of Science and Technology (Medical Sciences), 2008, 28(4): 426–430
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed