Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2014, Vol. 8 Issue (2): 123-135   https://doi.org/10.1007/s11706-014-0246-8
  本期目录
A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract
Selvaraj KUNJIAPPAN,Ranjana CHOWDHURY(),Chiranjib BHATTACHARJEE
Department of Chemical Engineering, Jadavpur University, Jadavpur, Kolkata-700 032, India
 全文: PDF(2116 KB)   HTML
Abstract

This article reports the environmentally benign synthesis of gold nanoparticles (GNPs) using methanol extract of Azolla microphylla as the stabilizing and reducing agent. The GNPs were characterized by UV-vis spectrophotometry and FTIR, and the morphological characteristics were analyzed by XRD, FESEM-EDX and HRTEM. The GNPs could be formed in very short time, even in less than 30 min. The nanoparticles measured by UV-spectrophotometer demonstrated a peak at 540 nm corresponding to surface plasmon resonance spectra, and the peaks showed by FTIR suggested the presence of organic biomolecules on the surface of the GNPs. XRD results confirmed the crystalline nature of the GNPs, and FESEM-EDX and HRTEM analyses had been performed in the size ranges of 17--40 nm and 1.25--17.5 nm respectively. The synthesized GNPs showed excellent antioxidant activity. This study shows the feasibility of using plant sources for the biosynthesis of GNPs.

Key wordsAzolla microphylla    gold nanoparticle (GNP)    antioxidant activity    surface plasmon resonance    green chemistry
收稿日期: 2014-01-25      出版日期: 2014-06-24
Corresponding Author(s): Ranjana CHOWDHURY   
 引用本文:   
. [J]. Frontiers of Materials Science, 2014, 8(2): 123-135.
Selvaraj KUNJIAPPAN,Ranjana CHOWDHURY,Chiranjib BHATTACHARJEE. A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract. Front. Mater. Sci., 2014, 8(2): 123-135.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-014-0246-8
https://academic.hep.com.cn/foms/CN/Y2014/V8/I2/123
Fig.1  
Fig.2  
Fig.3  
Ex. No.Volume/mLTotal volume/mLTime /min
1 mmol/L HAuCl4Azolla microphylla methanol extractDeionized water
1250.14.930~210
2250.24.830~130
3250.34.730~92
4250.44.630~43
5250.54.530~28
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Name of assayFree radical scavenging power
%DPPHsc(85.75±0.439)%
FRAP(872.03±5.8) μm of FeSO4/mg
%H2O2sc(82.13±0.30)%
%NOsc(75.97±0.31)%
Tab.2  
1 Hubenthal F. Nobel metal nanoparticles: synthesis and optical properties. In: Andrews D L, Scholes G D, Wiederrecht G P, eds. Comprehensive Nanoscience and Technology. Nanomaterials Elsevier Science, 2011, 375-435
2 O’Neal D P, Hirsch L R, Halas N J, . Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters, 2004, 209(2): 171-176
3 Huang J, Li Q, Sun D, . Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18(10): 105104
4 Cognet L, Tardin C, Boyer D, . Single metallic nanoparticle imaging for protein detection in cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20): 11350-11355
5 Lee J, Kim Y H, Zhou H, . Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. Journal of Materials Chemistry, 2011, 21(35): 13316-13326
6 Yu D-G. Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 171-178
7 Liu Y C, Lin L H. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry Communications, 2004, 6(11): 1163-1168
8 Mallick K, Witcomb M J, Scurrell M S. Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering. Materials Chemistry and Physics, 2005, 90(2-3): 221-224
9 Song J Y, Kim B S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 2009, 32(1): 79-84
10 Nune S K, Chanda N, Shukla R, . Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Journal of Materials Chemistry, 2009, 19(19): 2912-2920
11 Giljohann D A, Seferos D S, Daniel W L, . Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition in English, 2010, 49(19): 3280-3294
12 Das S K, Das A R, Guha A K. Synthesis of gold nanoparticles: a green chemical approach. International Conference on Soft System ICSS-2008, Kolkata, India, <day>3</day>-<day>15</day><month>February</month>, 2008
13 Lokina S, Narayanan V. Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chemical Science Transactions, 2013, 2(S1): S105-S110
14 Dubey S P, Lahtinen M, S?rkk? H, . Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids and Surfaces B: Biointerfaces, 2010, 80(1): 26-33
15 Sperling R A, Rivera Gil P, Zhang F, . Biological applications of gold nanoparticles. Chemical Society Reviews, 2008, 37(9): 1896-1908
16 Chen Y P, Dai Z H, Liu P C, . Effects of nanogold on the alleviation of carbon tetrachloride-induced hepatic injury in rats. Chinese Journal of Physiology, 2012, 55(5): 331-336
17 Mukherjee P, Bhattacharya R, Wang P, . Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, 2005, 11(9): 3530-3534
18 Sumit S L, Nayak P L. Green synthesis of gold nanoparticles using various extract of plants and spices. International Journal of Science Innovations and Discoveries, 2012, 2(3): 325-350
19 Abhijith K S, Thakur M S. Application of green synthesis of gold nanoparticles for sensitive detection of aflatoxin B1 based on metal enhanced fluorescence. Analytical Methods, 2012, 4(12): 4250-4256
20 K?hler J M, Csaki A, Reichert J, . Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sensors and Actuators B: Chemical, 2001, 76(1-3): 166-172
21 Lazarides A A, Kelly K L, Jensen T R, . Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. Journal of Molecular Structure: THEOCHEM, 2000, 529(1-3): 59-63
22 Ghosh S, Patil S, Ahire M, . Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemo catalytic potential. Journal of Nanobiotechnology, 2012, 10: 17, 19
23 Ahmad A, Mukherjee P, Senapati S, . Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 2003, 28(4): 313-318
24 Sastry M, Ahmad A, Khan M I, . Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 2003, 85(2): 162-170
25 Krumov N, Perner-Nochta I, Oder S, . Production of inorganic nanoparticles by microorganisms. Chemical Engineering & Technology, 2009, 32(7): 1026-1035
26 Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42(5): 1417-1424
27 Shankar S S, Rai A, Ahmad A, . Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004, 275(2): 496-502
28 Wagner G M. Azolla: a review of its biology and utilization. Botanical Review, 1997, 63(1): 1-26
29 Waseem R, Preeti R, Suchit A J. Azolla: An aquatic pteridophyte with great potential. International Journal of Research in Biological Sciences, 2012, 2(2): 68-72
30 Lumpkin T A, Plucknett D L. Azolla: botany, physiology and use as green manure. Economic Botany, 1980, 34(2): 111-153
31 Van Hove C. Azolla: And Its Multiple Uses with Emphasis on Africa. Food and Agriculture Organization, 1989
32 Nik-khah A, Motaghi-Talab M. The use of Azolla in lactating cows. Iranian Journal of Agricultural Sciences, 1992, 23(1): 47-56
33 Abraham G, Aeri V. A preliminary examination of the phytochemical profile of Azolla microphylla with respect to Seasons. Asian Pacific Journal of Tropical Biomedicine, 2012, 2(3): S1392-S1395
34 Yao L H, Jiang Y M, Shi J, . Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 2004, 59(3): 113-122
35 Sadhu S K, Okuyama E, Fujimoto H, . Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. Journal of Ethnopharmacology, 2006, 108(3): 371-378
36 Katayama N, Yamashita M, Kishida Y, . Azolla as a component of the space diet during habitation on Mars. Acta Astronautica, 2008, 63(7-10): 1093-1099
37 Singleton V L, Rossi J A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid regents. American Journal of Enology and Viticulture, 1965, 16(3): 144-158
38 Siddhuraju P, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 2003, 51(8): 2144-2155
39 Ramadan M F, Kroh L W, M?rsel J T. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. Journal of Agricultural and Food Chemistry, 2003, 51(24): 6961-6969
40 Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 1996, 239(1): 70-76
41 Nabavi S M, Ebrahimzadeh M A, Nabavi S F, . Determination of antioxidant activity, phenol and flavonoid content of Parrotia persica Mey. Pharmacologyonline, 2008, 2: 560-567
42 Ebrahimzadeh M A, Nabavi S F, Nabavi S M. Antioxidant activities of methanol extract of Sambucus ebulus L. flower. Pakistan Journal of Biological Sciences, 2009, 12(5): 447-450
43 Singh M, Kalaivani R, Manikandan S, . Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Applied Nanoscience, 2013, 3(2): 145-151
44 Wu C C, Chen D H. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bulletin, 2010, 43(4): 234-240
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed