Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2014, Vol. 8 Issue (3): 219-229   https://doi.org/10.1007/s11706-014-0254-8
  本期目录
Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants
Zhen-Tao YU1,*(),Ming-Hua ZHANG2,Yu-Xing TIAN1,Jun CHENG1,Xi-Qun MA1,Han-Yuan LIU1,Chang WANG1
1. Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
2. Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
 全文: PDF(2232 KB)   HTML
Abstract

Developing the new titanium alloys with excellent biomechanical compatibility has been an important research direction of surgical implants materials. Present paper summarizes the international researches and developments of biomedical titanium alloys. Aiming at increasing the biomechanical compatibility, it also introduces the exploration and improvement of alloy designing, mechanical processing, microstructure and phase transformation, and finally outlines the directions for scientific research on the biomedical titanium alloys in the future.

Key wordsbiomedical Ti alloys    biomechanical compatibility    surgical implant    microstructure    phase transformation
收稿日期: 2014-04-29      出版日期: 2014-09-12
Corresponding Author(s): Zhen-Tao YU   
 引用本文:   
. [J]. Frontiers of Materials Science, 2014, 8(3): 219-229.
Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants. Front. Mater. Sci., 2014, 8(3): 219-229.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-014-0254-8
https://academic.hep.com.cn/foms/CN/Y2014/V8/I3/219
Classification and applicationBasic requirements and characteristics
Repair or replacement of hard tissues (orthopedics, dental, etc.)1) good biocompatibility2) appropriate mechanical strength, better processing and working3) specific surface chemistry and microstructure to support bone cell growth and differentiation4) easily combined with other active molecules (bone morphogenetic protein, transforming growth factor, etc.) to ?induce bone growth5) easy to disinfect
Interventional therapy of soft tissues (blood vessel, non vascular)1) good biocompatibility to avoid immune rejection or corrosion2) slight procoagulant ability, does not cause inflammation and endometrial hyperplasia of vascular wall after ?implantation3) good flexibility, easy to implant4) good expansionary5) strong supporting force6) can be seen under X-ray7) minimum surface connection area
Tab.1  
AlloyClassificationChinese designationChinese standardU.S. designationInternational standard
Pure TiαTA1, TA2, TA3, TA4 TA1ELIGB/T13810-2007Gr1, Gr2, Gr3, Gr4, Gr1ELIISO5832-2: 1999(E)ASTMF67: 2006a
Ti–6Al–4Vα+βTC4, TC4ELIGB/T13810-2007Gr5 (Ti64), Gr5ELIISO5832-3: 1996(E)ASTMF1472: 2002ASTMF136: 2002a
Ti–6Al–7Nbα+βTC20GB/T13810-2007ISO5832-11: 1994(E)ASTMF1295: 2005
β Ti alloyβTi13Nb13Zr, Ti12Mo6Zr2Fe (TMZF), Ti15Mo etc.ASTMF1713: 2003ASTMF1813: 2001ASTMF2066: 2007
Tab.2  
Titanium alloyComposition
Binary alloyTi–Mo, Ti–Nb, Ti–Ta, Ti–Hf, etc.
Ternary alloyTi–Nb–Pt, Ti–Nb–Pd, Ti–Nb–Ta, Ti–Nb–Zr, Ti–Mo–Ta, Ti–Ta–Zr, Ti–Nb–Hf, Ti–Nb–Sn, Ti–Mo–Nb, Ti–Mo–Sn, Ti–Mo–Hf, Ti–Ta–Fe, Ti–Nb–Fe, Ti–Mo–Ga, Ti–Mo–Al, Ti–Mo–Ge, Ti–Mo–Ag, Ti–Mo–Sc, Ti–Cr–Cu, Ti–Nb–Fe, Ti–Nb–Al, Ti–Nb–O, etc.
Quaternary alloyTi–Nb–Ta–Zr, Ti–Nb–Ta–Sn, Ti–Nb–Mo–Zr, Ti–Mo–Zr–Sn, Ti–Mo–Zr–Fe, Ti–Mo–Zr–Al, Ti–Mo–Nb–Sn, Ti–Mo–Ga–Nb, Ti–Ta–Zr–Fe, Ti–Mo–Nb–Si, Ti–Mo–Nb–O, etc.
Quinary alloyTi–Mo–Nb–Zr–Sn, Ti–Mo–Al–Nb–Si, Ti–Nb–Sn–Ta–Pd, Ti–Nb–Zr–Ta–O, etc.
Hexahydric alloyTi–12Ta–9Nb–3V–6Zr–1.5O, Ti–23Nb–0.7Ta–2Zr–1.2O, Ti–Fe–Mo–Mn–Nb–Zr, etc.
Tab.3  
Alloy[Mo]eqe/aB ˉoM ˉd
Ti–29Nb–13Ta–4.6Zr (TNTZ)10.94.232.8782.462
Ti–24Nb–4Zr–7.9Sn (Ti2448)6.674.1512.8232.442
Ti–36Nb–2Ta–3Zr–0.3O (Gum Metal)10.44.2402.8702.450
Ti–3Zr–2Sn–3Mo–25Nb (TLM)10.64.1862.8422.441
Tab.4  
Alloy typeHeat treatmentMicrostructureTypical alloys
αsolution treatment above the recrystallization temperatureα phaseTA1, TA2, TA3, TA4, TA1ELI, Ti3Al2Mo2Zr (TA24), Ti3Al2.5V (TA18)
α+bsolution treatment above the recrystallization temperatureα and β phaseTi6Al4V (TC4), Ti6Al4V ELI, Ti6Al7Nb (TC20), Ti5Al2.5Fe (TC15)
solution treatment above the α+β phase region+ rapid cooling (water or oil quenching)martensite phase α′ or α′′ etc.
solution treatment below the α+β phase region+ rapid cooling (water or oil quenching)metastable β and α phase
solution treatment below the α+β phase region+ rapid cooling (water or oil quenching) + agingsecondary α and transferring β phase
Fully βsolution treatment above the recrystallization temperatureβ phaseTi30Mo
Metastable βsolution treatment in the β phase region+ rapid cooling (water or oil quenching)metastable β, β′ phase etc.Ti12Mo6Zr2Fe (TMZF), Ti15Mo
solution treatment in the β phase region+ rapid cooling+ agingsecondary α, w phase etc.
solution treatment in the β phase region+ air coolingmetastable β, β′, primary α phase etc.
solution treatment in the β phase region+ air cooling+ agingprimary α, secondary α, β phase etc.
Near β or rich α+βsolution treatment in the β phase region+ rapid cooling (water or oil quenching)martensite α′ or α′′ phase etc.Ti13Nb13Zr, TLM, TLE, Ti2448, etc.
solution treatment in the β phase region+ rapid cooling+ agingprimary α, w and β phase etc.
solution treatment in the β phase region+ air coolingmetastable β, primary α phase
solution treatment in the β phase region+ air cooling+ agingsecondary α, w and β phase
solution treatment in the α+β phase region+ rapid cooling or air coolingmartensite α′ or α′′ phase, primary α and transforming β phase etc.
solution treatment in the α+β phase region+ rapid cooling or air cooling+ agingsecondary α and β phase etc.
Tab.5  
Fig.1  
Heat treatmentPhaseRp0.2 /MPaRm /MPaA5E /GPa
Solid solute 750°C × 30 minβ + little α′′3406453954
Aging for 300°C-400°C (5°C/min)β + ω5807803355
Aging for 400°C-450°C (5°C/min)β + little ω+ little α3706653151
Aging for 480°C × 4 hβ + α7007652375
Aging for 510°C × 4 hβ + α7488682278
Tab.6  
Fig.2  
Fig.3  
AlloyMaterialsRp0.2 /MPaRm /MPaA /%Z /%Grain grade
TC4ELIФ0.5 mm (wire, M)88510077.0A1
TC4ELIФ1.0 mm (wire, M)92410239.6A1
TC4ELIФ5 mm (rod, M)906103213.5A1
TC4905106413.5A1
TC4ELIФ20 mm (rod, M)94310111543A1
TC4990105111.538A1
TC4Ф50 mm (rod, M)911100612.541A3
TC4Ф60 mm (rod, M)8889721441A3
TC4ELIФ90 mm (rod, M)89596617.549A3
TC41 mm (plate, M)1005109513.5A2
TC425 mm (plate, M)928100315A5
Tab.7  
Fig.4  
1 Yu Z T, Zhang M H, Yu S, . Analysis of research and development production and application of biomedical Ti alloys materials applied in medical devices of China. China Medical Devices Information, 2012, 18(7): 1–8 (in Chinese)
2 Bothe R T, Beaton L E, Davenport H A. Reaction of bone to multiple metallic implants. Surgery, Gynecology & Obstetrics, 1940, 71(5): 598–602
3 Leventhal G S. Titanium, a metal for surgery. The Journal of Bone and Joint Surgery: American Volume, 1951, 33(2): 473–474
4 Branemark K P, Breine U, Lindstrom J, . Intra-osseous auchorage of dental prostheses. Journal of Experimental Studies, 1969, 3: 81–82
5 Branemark P I, Hansson B O, Adell R, . Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery: Supplementum, 1977, 16: 1–132
6 Geetha M, Singh A K, Asokamani R, . Ti based biomaterials, the ultimate choice for orthopedic implants: a review. Progress in Materials Science, 2009, 54(3): 397–425
7 Long M, Rack H J. Titanium alloys in total joint replacement — a materials science perspective. Biomaterials, 1998, 19(18): 1621–1639
8 Kuroda D, Niinomi M, Morinaga M, . Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A, 1998, 243(1–2): 244–249
9 Davidson J A, Gergette F S. State of the art materials for orthopedic prosthetic devices. Society of Manufacturing Engineers, 1987, 87: 122–126
10 Zwicker R, Buehler K, Mueller R, . Titanium’1980, Science and Technology, Proceedings of 4th International Conference on Titanium, Kyoto, Japan, 1980, 505–514
11 Semlitsch M, Staub F, Weber H. Titanium–aluminium–niobium alloy, development for biocompatible, high strength surgical implants. Biomedical Technology, 1985, 30(12): 334–339
12 Sumner D R, Galante J O. Determinants of stress shielding: design versus materials versus interface. Clinical Orthopaedics and Related Research, 1992, 274: 202–212
13 Geetha M, Singh A K, Muraleedharan K, . Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr. Journal of Alloys and Compounds, 2001, 329(1–2): 264–271
14 Yu Z T, Zhang Y F, Yuan S B, . Investigation on heat treatment and materials strengthening of near-β Ti4Zr1Sn3Mo25Nb alloy. Rare Metal Materials and Engineering, 2008, 37(4): 542–545
15 Yu Z T, Zhang Y F, Liu H, . Influence and analysis of alloy elements, process and heat treatment on mechanical properties of near-β TiZrMoNb. Rare Metal Materials and Engineering, 2010, 39(10): 1795–1801
16 Hao Y L, Yang R. Ti–Nb–Zr–Sn Ti alloy with nano grain and high strength. Acta Metallurgica Sinica, 2005, 41(11): 1183–1189 (in Chinese)
17 Okazaki Y, Ito Y, Kyo K, . Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Materials Science and Engineering A, 1996, 213(1–2): 138–147
18 Song Y, Xu D S, Yang R, . Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Materials Science and Engineering A, 1999, 260(1–2): 269–274
19 Wang X Z, Xiao J S, Zhang Z, . Research and development on Ti alloy with high elastic modulus and high strength. Acta Metallurgica Sinica, 1999, 35(suppl1): 167–170 (in Chinese)
20 Takahashi E, Sakurai T, Watanabe S, . Effect of treatment and Sn content on superelastic in biocompatibility TiNbSn alloys. Materials Transactions, 2002, 43(12): 2978–2983
21 Obbard E G, Hao Y L, Talling R J, . The effect of oxygen on α′′ martensite and superelasticity in Ti–24Nb–4Zr–8Sn. Acta Materialia, 2011, 59(1): 112–125
22 Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 1998, 243(1–2): 231–236
23 Song Y, Yang R, Li D, . Calculation of theoretical strengths and bulk moduli of bcc metals. Physical Review B: Condensed Matter and Materials Physics, 1999, 59(22): 14220–14225
24 Hwang J, Kuramoto S, Furuta T, . Phase-stability dependence of plastic deformation behavior in Ti–Nb–Ta–Zr–O alloy. Journal of Materials Engineering and Performance, 2005, 14(6): 747–754
25 Guillemot F, Prima F, Bareille R, . Design of new titanium alloys for orthopaedic applications. Medical & Biological Engineering & Computing, 2004, 42(1): 137–141
26 Saito T, Furuta T, Hwang J H, . Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science, 2003, 300(5618): 464–467
27 Kent D, Wang G, Yu Z, . Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(3): 405–416
28 Kent D, Wang G, Yu Z T, . Pseudoelastic behaviour of a β Ti–25Nb–3Zr–3Mo–2Sn alloy. Materials Science and Engineering A, 2010, A527(9): 2246–2252
29 Paladugu M, Kent D, Wang G, . Strengthening of cast Ti–25Nb–3Mo–3Zr–2Sn alloy through precipitation of α in two discrete crystallographic orientations. Materials Science and Engineering A, 2010, 527(24–25): 6601–6606
30 Hao Y L, Li S J, Sun S Y, . Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomaterialia, 2007, 3(2): 277–286
31 Yu Z T, Han J Y, Ma X Q, . Biological and mechanical compatibility of biomedical titanium alloy materials. Chinese Journal of Tissue Engineering Research, 2013, 17(25): 4707–4714
32 Grosdidier T, Philippe M J. Deformation induced martensite and superelasticity in a β-metastable titanium alloy. Materials Science and Engineering A, 2000, 291(1–2): 218–223
33 Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(1): 30–42
34 Yu Z T, Tian Y X, Yu S, . Research of novel β-type TLM alloy used in orthopedics. Chinese Journal of Clinical and Basic Orthopaedic Research, 2013, 5(1): 6–13 (in Chinese)
35 Ma X Q, Yu Z T, Niu J L, . Phase transformation and mechanical properties of Ti3Zr2Sn3Mo25Nb alloy. Transactions of Nonferrous Metals Society of China, 2010, 20(Special 1): 410–413
36 Leon M J, Evgeny L, Ruslan Z, . Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering R: Reports, 2014, 81: 1–19
37 Kuramoto S, Furuta T, Hwang J H, . Plastic deformation in a multifunctional Ti–Nb–Ta–Zr–O alloy. Metallurgical and Materials Transactions A, 2006, 37(3): 657–662
38 Yu Z T, Zhou L, Luo L J, . Investigation on mechanical compatibility matching for biomedical titanium alloys. Key Engineering Materials, 2005, 288–289: 595–598
39 Duerig T W, Terlinde G T, Willams J C. Phase transformation and tensile properties of Ti–10V–2Fe–3Al. Metallurgical Transactions A, 1980, 11(12): 1987–1998
40 Couchi C, Fukai H, Hasegawa K. Titanium’98, Proceeding of 9th International Titanium Conference, Xi’an, China, 1998, 129–137
41 Zhou T, Aindow M, Alpay S P, . Pseudo-elastic deformation behavior in a Ti/Mo based alloy. Scripta Materialia, 2004, 50(3): 343–348
42 Hanada S, Yoshio T, Nishimura K, . Titanium’88, Proceedings of 6th World Conference on Titanium, France, 1988, 105–110
43 Guibert J Ph, Servant C. Titanium’95, Science and Technology, Proceedings of 8th World Conference on Titanium, 1995, 972–979
44 Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012, 8(11): 3888–3903
45 Yu Z T, Zhou L, Niu J L, . Titanium’2007, Science and Technology, Proceedings of the 11th World Conference on Titanium, 2007, 1425–1428
46 Ma X Q, Yu Z T, Han Y, . In situ scanning electron microscopy observation of deformation and fracture behavior of Ti–3Zr–2Sn–3Mo–25Nb alloy. Rare Metals, 2012, 31(4): 318–322
47 Yu Z T, Zheng Y F, Zhou L, . Shape memory effect and superelastic property of a novel Ti–3Zr–2Sn–3Mo–15Nb alloy. Rare Metal Materials and Engineering, 2008, 37(1): 1–5
48 Yu Z T, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM. Materials Science and Engineering A, 2006, 438–440: 391–394
49 Mow V C, Huiskes R, eds. Basic Orthopaedic Biomechanics and Mechano-Biology (in Chinese, trans. Tang T T, Pei G X, Li X, .). 3rd ed. Jinan: Shandong Science & Technology Press, 2009, 115–157 (Original work published 2004)
50 Huang R, Han Y. The effect of surface grain refinement of Ti–25Nb–3Mo–3Zr–2Sn alloy on the osteoblast behavior. Chinese Journal of Clinical and Basic Orthopaedic Research, 2013, 5(1): 28–34 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed