Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2015, Vol. 9 Issue (3): 234-240   https://doi.org/10.1007/s11706-015-0306-8
  本期目录
Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes
Xiangcang REN1,2,Chuanjin TIAN1,*(),Sa LI2,Yucheng ZHAO2,Chang-An WANG2,*
1. School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
2. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(799 KB)   HTML
Abstract

In this work, three kinds of ultrathin tremella-like MnO2 have been simply synthesized by decomposing KMnO4 under mild hydrothermal conditions. When applied as electrode materials, they all exhibited excellent electrochemical performance. The as-prepared MnO2 samples were characterized by means of XRD, SEM, TEM and XPS. Additionally, the relationship of the crystalline nature with the electrochemical performance was investigated. Among the three samples, the product with the poorest crystallinity had the highest capacitance of 220 F/g at a current density of 0.1 A/g. It is thought that the ultrathin MnO2 nanostructures can serve as promising electrode materials for supercapacitors.

Key wordshydrothermal    manganese dioxide    supercapacitor    electrochemical property
收稿日期: 2015-03-30      出版日期: 2015-07-23
Corresponding Author(s): Chuanjin TIAN,Chang-An WANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2015, 9(3): 234-240.
Xiangcang REN,Chuanjin TIAN,Sa LI,Yucheng ZHAO,Chang-An WANG. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes. Front. Mater. Sci., 2015, 9(3): 234-240.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-015-0306-8
https://academic.hep.com.cn/foms/CN/Y2015/V9/I3/234
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
<?PubTbl row rht="0.36in"?>
ACalternating current
CVcyclic voltammetry
EISelectrochemical impedance spectroscopy
FE-SEMfield emission scanning electron microscopy
PTFEpolytetrafluoroethylene
PVPpoly(vinyl pyrrolidone)
SCEsaturated calomel electrode
TEMtransmission electron microscopy
XPSX-ray photoelectron spectroscopy
XRDX-ray powder diffraction
Tab.1  
1 Jiang H, Sun T, Li C, . Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. Journal of Materials Chemistry, 2012, 22(6): 2751–2756
2 Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. Journal of Physical Chemistry C, 2008, 112(11): 4406–4417
3 Yan Y, Cheng Q, Zhu Z, . Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes. Journal of Power Sources, 2013, 240: 544–550
4 Jiang H, Ma J, Li C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Advanced Materials, 2012, 24(30): 4197–4202
5 Yan Y, Cheng Q, Wang G, . Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. Journal of Power Sources, 2011, 196(18): 7835–7840
6 Zhang Y, Li J, Kang F, . Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications. International Journal of Hydrogen Energy, 2012, 37(1): 860–866
7 Lei Z, Zhang J, Zhao X. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22(1): 153–160
8 Wei W, Huang X, Tao Y, . Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network. Physical Chemistry Chemical Physics, 2012, 14(17): 5966–5972
9 Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science, 2013, 6(1): 41–53
10 Meher S K, Rao G R. Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources, 2012, 215: 317–328
11 Subramanian V, Zhu H, Vajtai R, . Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B, 2005, 109(43): 20207–20214
12 Fischer A E, Pettigrew K A, Rolison D R, . Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Letters, 2007, 7(2): 281–286
13 Hou Y, Cheng Y, Hobson T, . Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 2010, 10(7): 2727–2733
14 Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials, 2002, 14(9): 3946–3952
15 Zhang L, Kang L, Lv H, . Controllable synthesis, characterization, and electrochemical properties of manganese oxide nanoarchitectures. Journal of Materials Research, 2008, 23(03): 780–789
16 Zhou J, Yu L, Sun M, . Novel synthesis of birnessite-type MnO2 nanostructure for water treatment and electrochemical capacitor. Industrial & Engineering Chemistry Research, 2013, 52(28): 9586–9593
17 Wang Y T, Lu A H, Zhang H L, . Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. The Journal of Physical Chemistry C, 2011, 115(13): 5413–5421
18 Chen R, Zavalij P, Whittingham M S. Hydrothermal synthesis and characterization of KxMnO2·yH2O. Chemistry of Materials, 1996, 8(6): 1275–1280
19 Hashemzadeh F, Motlagh M M K, Maghsoudipour A. A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO2 nanostructures. Journal of Sol-Gel Science and Technology, 2009, 51(2): 169–174
20 Li Q, Lu X F, Xu H, . Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2014, 6(4): 2726–2733
21 Xu M, Kong L, Zhou W, . Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. The Journal of Physical Chemistry C, 2007, 111(51): 19141–19147
22 Brousse T, Toupin M, Dugas R, . Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society, 2006, 153(12): A2171–A2180
23 Ming B, Li J, Kang F, . Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. Journal of Power Sources, 2012, 198: 428–431
24 Jiang H, Li C, Sun T, . A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 2012, 4(3): 807–812
25 Dai Y, Jiang H, Hu Y, . Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications. Industrial & Engineering Chemistry Research, 2014, 53(8): 3125–3130
26 Zhu Z, Hu Y, Jiang H, . A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. Journal of Power Sources, 2014, 246: 402–408
27 Zhao Y, Meng Y, Jiang P. Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. Journal of Power Sources, 2014, 259: 219–226
28 Zhao M Q, Ren C E, Ling Z, . Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015, 27(2): 339–345
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed