1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2. Analysis and Testing Center, Shandong University of Technology, Zibo 255000, China
Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.
. [J]. Frontiers of Materials Science, 2017, 11(1): 33-41.
Xiaobing WEI,Cairong GONG,Xujuan CHEN,Guoliang FAN,Xinhua XU. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance. Front. Mater. Sci., 2017, 11(1): 33-41.
Wang L, Wei W, Xia Z, . Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends in Analytical Chemistry, 2016, 80: 495–506
https://doi.org/10.1016/j.trac.2016.04.001
2
Unger K K, Skudas R, Schulte M M. Particle packed columns and monolithic columns in high-performance liquid chromatography — comparison and critical appraisal. Journal of Chromatography A, 2008, 1184(1‒2): 393–415
https://doi.org/10.1016/j.chroma.2007.11.118
pmid: 18177658
3
Zhao B B, Zhang Y, Tang T, . Silica based stationary phases for high performance liquid chromatography. Progress in Chemistry, 2012, 24(1): 122–130 (in Chinese)
4
Zhao L, Yang L, Wang Q. Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation. Journal of Chromatography A, 2016, 1446: 125–133
https://doi.org/10.1016/j.chroma.2016.04.014
pmid: 27083263
5
Qiu H, Liang X, Sun M, . Development of silica-based stationary phases for high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 2011, 399(10): 3307–3322
https://doi.org/10.1007/s00216-010-4611-x
pmid: 21221544
6
Miyabe K. New moment equations for chromatography using various stationary phases of different structural characteristics. Analytical Chemistry, 2007, 79(19): 7457–7472
https://doi.org/10.1021/ac070825s
pmid: 17822304
7
Ali I, Al-Othman Z A, Al-Za’abi M. Superficially porous particles columns for super fast HPLC separations. Biomedical Chromatography, 2012, 26(8): 1001–1008
pmid: 22237804
8
Abrahim A, Al-Sayah M, Skrdla P, . Practical comparison of 2.7 μm fused-core silica particles and porous sub-2 μm particles for fast separations in pharmaceutical process development. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(1): 131–137
https://doi.org/10.1016/j.jpba.2009.08.023
pmid: 19758782
9
Dong H, Brennan J D. Rapid fabrication of core‒shell silica particles using a multilayer-by-multilayer approach. Chemical Communications, 2011, 47(4): 1207–1209
https://doi.org/10.1039/C0CC04221H
pmid: 21107466
Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111–1114
https://doi.org/10.1126/science.282.5391.1111
pmid: 9804547
12
Liu J, Liu F, Gao K, . Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry, 2009, 19(34): 6073–6084
https://doi.org/10.1039/b900116f
13
Dash B C, Réthoré G, Monaghan M, . The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials, 2010, 31(32): 8188–8197
https://doi.org/10.1016/j.biomaterials.2010.07.067
pmid: 20701967
14
Zeng H, Xu X, Bando Y, . Template deformation-tailored ZnO nanorod/nanowire arrays: full growth control and optimization of field-emission. Advanced Functional Materials, 2009, 19(19): 3165–3172
https://doi.org/10.1002/adfm.200900714
15
Zhao B, Collinson M M. Hollow silica capsules with well-defined asymmetric windows in the shell. Langmuir, 2012, 28(19): 7492–7497
https://doi.org/10.1021/la301560r
pmid: 22551097
16
Dong Z, Lai X, Halpert J E, . Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Advanced Materials, 2012, 24(8): 1046–1049
https://doi.org/10.1002/adma.201104626
pmid: 22266874
17
Strandwitz N C, Shaner S, Stucky G D. Compositional tunability and high temperature stability of ceria‒zirconia hollow spheres. Journal of Materials Chemistry, 2011, 21(29): 10672–10675
https://doi.org/10.1039/c1jm10897b
18
Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chemical Reviews, 2008, 108(9): 3893–3957
https://doi.org/10.1021/cr068035q
pmid: 18720998
19
Hu H, Zhou H, Liang J, . Facile synthesis of amino-functionalized hollow silica microspheres and their potential application for ultrasound imaging. Journal of Colloid and Interface Science, 2011, 358(2): 392–398
https://doi.org/10.1016/j.jcis.2011.03.051
pmid: 21481405
20
Hebalkar N Y, Acharya S, Rao T N. Preparation of bi-functional silica particles for antibacterial and self cleaning surfaces. Journal of Colloid and Interface Science, 2011, 364(1): 24–30
https://doi.org/10.1016/j.jcis.2011.07.087
pmid: 21889161
21
Karabacak R B, Erdem M, Yurdakal S, . Facile two-step preparation of polystyrene/anatase TiO2 core/shell colloidal particles and their potential use as an oxidation photocatalyst. Materials Chemistry and Physics, 2014, 144(3): 498–504
https://doi.org/10.1016/j.matchemphys.2014.01.026
22
Demirörs A F, van Blaaderen A, Imhof A, . Synthesis of eccentric titania‒silica core‒shell and composite particles. Chemistry of Materials, 2009, 21(6): 979–984
https://doi.org/10.1021/cm803250w
23
Wen H Y, Gao G, Han Z R, . Magnetite-coated polystyrene hybrid microspheres prepared by miniemulsion polymerization. Polymer International, 2008, 57(4): 584–591
https://doi.org/10.1002/pi.2287
Stephenson R C, Partch R E. Metal oxide and metal carbide thin film coatings on large spherical particles. MRS Online Proceedings Library, 1996, 458: 435
https://doi.org/10.1557/PROC-458-435
26
Yuan J, Wan D, Yang Z. A facile method for the fabrication of thiol-functionalized hollow silica spheres. The Journal of Physical Chemistry C, 2008, 112(44): 17156–17160
https://doi.org/10.1021/jp805954r
27
Pu H, Zhang X, Yuan J, . A facile method for the fabrication of vinyl functionalized hollow silica spheres. Journal of Colloid and Interface Science, 2009, 331(2): 389–393
https://doi.org/10.1016/j.jcis.2008.11.037
pmid: 19059601
28
Deng T S, Marlow F. Synthesis of monodisperse polystyrene@vinyl-SiO2 core‒shell particles and hollow SiO2 spheres. Chemistry of Materials, 2012, 24(3): 536–542
https://doi.org/10.1021/cm203099m
29
Dong H, Brennan J D. Tailoring the properties of sub-3 μm silica core‒shell particles prepared by a multilayer-by-multilayer process. Journal of Colloid and Interface Science, 2015, 437: 50–57
https://doi.org/10.1016/j.jcis.2014.09.033
pmid: 25310582
30
Chen Y, Chen H, Guo L, . Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1): 529–539
https://doi.org/10.1021/nn901398j
pmid: 20041633
31
Huang T T, Geng T, Akin D, . Micro-assembly of functionalized particulate monolayer on C18-derivatized SiO2 surfaces. Biotechnology and Bioengineering, 2003, 83(4): 416–427
https://doi.org/10.1002/bit.10680
pmid: 12800136
32
Sun S, Zhang X, Han Q, . Preparation and retention mechanism exploration of mesostructured cellular foam silica as stationary phase for high performance liquid chromatography. Talanta, 2016, 149: 187–193
https://doi.org/10.1016/j.talanta.2015.11.042
pmid: 26717830
33
Wang R, Tang J, Liu J, . Preparation of Ag@SiO2 dispersion in different solvents and investigation of its optical properties. Journal of Dispersion Science and Technology, 2011, 32(4): 532–537
https://doi.org/10.1080/01932691003757082
34
Wang W, Gu B, Liang L. Effect of surfactants on the formation, morphology, and surface property of synthesized SiO2 nanoparticles. Journal of Dispersion Science and Technology, 2005, 25(5): 593–601
https://doi.org/10.1081/DIS-200027309
35
Iyer R, Suin S, Shrivastava N K, . Compatibilization mechanism of nanoclay in immiscible PS/PMMA blend using unmodified nanoclay. Polymer-Plastics Technology and Engineering, 2013, 52(5): 514–524
https://doi.org/10.1080/03602559.2012.762024
36
Liu P. Facile preparation of monodispersed core/shell zinc oxide@polystyrene (ZnO@PS) nanoparticles via soapless seeded microemulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 291(1‒3): 155–161
https://doi.org/10.1016/j.colsurfa.2006.05.007
37
Gemici Z, Shimomura H, Cohen R E, . Hydrothermal treatment of nanoparticle thin films for enhanced mechanical durability. Langmuir, 2008, 24(5): 2168–2177
https://doi.org/10.1021/la703074r
pmid: 18232719
38
Blue L E, Jorgenson J W. 1.1 μm superficially porous particles for liquid chromatography. Part I: synthesis and particle structure characterization. Journal of Chromatography A, 2011, 1218(44): 7989–7995
https://doi.org/10.1016/j.chroma.2011.09.004
pmid: 21939979
39
Dafinone M I, Feng G, Brugarolas T, . Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano, 2011, 5(6): 5078–5087
https://doi.org/10.1021/nn201167j
pmid: 21557541