Microstructure and mechanical properties of tungsten composite reinforced by fibre network
Linhui ZHANG1,2, Yan JIANG1, Qianfeng FANG1,2(), Zhuoming XIE1,2, Shu MIAO1,2, Longfei ZENG1,2, Tao ZHANG1, Xianping WANG1, Changsong LIU1
1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China 2. Graduate School, University of Science and Technology of China, Hefei 230026, China
In this paper the tungsten-fibre-net-reinforced tungsten composites were produced by spark plasma sintering (SPS) using fine W powders and commercial tungsten fibres. The relative density of the samples is above 95%. It was found that the recrystallization area in the fibres became bigger with increasing sintering temperature and pressure. The tungsten grains of fibres kept stable when sintered at 1350°C/16 kN while grown up when sintered at 1800°C/16 kN. The composite sintered at 1350°C/16 kN have a Vickers-hardness of ~610 HV, about 2 times that of the 1800°C/16 kN sintered one. Tensile tests imply that the temperature at which the composites (1350°C/16 kN) begin to exhibit plastic deformation is about 200°C–250°C, which is 400°C lower than that of SPSed pure W. The tensile fracture surfaces show that the increasing fracture ductility comes from pull-out, interface debonding and fracture of fibres.
Chemical composition (mass fraction) corresponding to different grain sizes /ppm
200 nm
500 nm
Na
3
5
Mo
15
16
O
4600
2200
Bi
1
1
Cd
1
1
Cu
1
1
Pb
1
1
Sn
1
1
Al
5
5
As
5
5
Ca
5
5
Co
5
5
Cr
5
5
Ti
5
5
Ni
5
5
Sb
5
5
Si
5
5
V
5
5
Mn
5
5
Mg
5
5
S
5
5
P
5
5
K
6
6
Fe
10
10
W
in balance
in balance
Tab.1
Fig.3
Sample
Mass fraction of fibre /%
Relative density /%
Vickers hardness/HV0.2
Fibre
100
99.8
668±11
Wf/W-1350-16
22.3±0.1
95.7±0.2
612±9 (fibre)
616±8 (matrix)
Wf/W-1800-16
22.5±0.2
95.2±0.3
384±8 (fibre)
300±6 (matrix)
Tab.2
Fig.4
Fig.5
Fig.6
21
Du J, Höschen T, Rasinski M, et al.. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2010, 527(6): 1623–1629 https://doi.org/10.1016/j.msea.2009.10.046
1
Liu L, Liu D P, Hong Y, et al.. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials, 2016, 471: 1–7 https://doi.org/10.1016/j.jnucmat.2016.01.001
2
Li X W, Zhang M N, Zheng D H, et al.. The oxidation behavior of the WC–10 wt.% Ni3Al composite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2015, 629: 148–154 https://doi.org/10.1016/j.jallcom.2015.01.010
3
Dai S Y, Wang L, Kirschner A, et al.. Kinetic modelling of material erosion and impurity transport in edge localized modes in EAST. Nuclear Fusion, 2015, 55(4): 043003 (8 pages) https://doi.org/10.1088/0029-5515/55/4/043003
4
Palacios T, Monge M A, Pastor J Y. Tungsten–vanadium–yttria alloys for fusion power reactors (I): Microstructural characterization. International Journal of Refractory Metals and Hard Materials, 2016, 54: 433–438 https://doi.org/10.1016/j.ijrmhm.2015.07.032
5
Ekbom L B. Tungsten heavy-metals. Scandinavian Journal of Metallurgy, 1991, 20(3): 190–197
6
Giannattasio A, Yao Z, Tarleton E, et al.. Brittle-ductile transitions in polycrystalline tungsten. Philosophical Magazine, 2010, 90(30): 3947–3959 https://doi.org/10.1080/14786435.2010.502145
7
Miao S, Xie Z M, Yang X D, et al.. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W–0.5 wt.% TaC alloys. International Journal of Refractory Metals & Hard Materials, 2016, 56: 8–17 https://doi.org/10.1016/j.ijrmhm.2015.12.004
8
Xie Z M, Zhang T, Liu R, et al.. Grain growth behavior and mechanical properties of zirconium microalloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. International Journal of Refractory Metals & Hard Materials, 2015, 51: 180–187 https://doi.org/10.1016/j.ijrmhm.2015.03.019
22
Du J, Höschen T, Rasinski M, et al.. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Composites Science and Technology, 2010, 70(10): 1482–1489 https://doi.org/10.1016/j.compscitech.2010.04.028
23
Du J, Höschen T, Rasinski M, et al.. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. Journal of Nuclear Materials, 2011, 417(1–3): 472–476 https://doi.org/10.1016/j.jnucmat.2010.12.254
9
Liu S L, Ye X X, Jiang L, et al.. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 655: 269–276 https://doi.org/10.1016/j.msea.2016.01.010
10
Wang S, Chen C, Jia Y L, et al.. Effects of grain size on the microstructure and texture of cold-rolled Ta–2.5W alloy. International Journal of Refractory Metals & Hard Materials, 2016, 58: 125–136 https://doi.org/10.1016/j.ijrmhm.2016.04.018
11
Sinclair R, Preuss M, Maire E, et al.. The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites. Acta Materialia, 2004, 52(6): 1423–1438 https://doi.org/10.1016/j.actamat.2003.11.024
12
Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials, 2013, 440(1–3): 272–277 https://doi.org/10.1016/j.jnucmat.2013.05.017
13
Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998, 46(17): 6089–6102 https://doi.org/10.1016/S1359-6454(98)00275-4
14
Carvalho P A, Livramento V, Nunes D, et al.. Tungsten–tantalum composites for plasma facing applications. Materials for Energy, 2010, 4–8
15
Pemberton S R, Oberg E K, Dean J, et al.. The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology, 2011, 71(3): 266–275 https://doi.org/10.1016/j.compscitech.2010.10.011
16
Son C Y, Kim G S, Lee S B, et al.. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(6): 1911–1920 https://doi.org/10.1007/s11661-011-1066-4
17
Zhang B, Fu H M, Sha P F, et al.. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2013, 566: 16–21 https://doi.org/10.1016/j.msea.2012.12.080
18
Riesch J, Buffiere J Y, Hoschen T, et al.. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Materialia, 2013, 61(19): 7060–7071 https://doi.org/10.1016/j.actamat.2013.07.035
19
Riesch J, Aumann M, Coenen J W, et al.. Chemically deposited tungsten fibre-reinforced tungsten − The way to a mock-up for divertor applications. Nuclear Materials and Energy, 2016, 9: 75–83
20
Zhang L H, Jiang Y, Fang Q F, et al.. Toughness and microstructure of tungsten fibre net-reinforced tungsten composite produced by spark plasma sintering. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 659: 29–36 https://doi.org/10.1016/j.msea.2016.02.034
24
Xie Z M, Liu R, Fang Q F, et al.. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. Journal of Nuclear Materials, 2014, 444(1–3): 175–180 https://doi.org/10.1016/j.jnucmat.2013.09.045
25
Asrar N, Meshkov L L, Sokolovskaya E M. Interdiffusional effects in tungsten fiber reinforced nickel-matrix composites. Transactions of the Indian Institute of Metals, 1990, 43(6): 364–367
26
Lee M H, Das J, Sordelet D J, et al.. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. Applied Physics Letters, 2012, 101(12): 124103