Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (3): 233-240   https://doi.org/10.1007/s11706-017-0384-x
  本期目录
Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer
Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI()
Key Laboratory of Advanced Display and System Applications (Ministry of Education), Shanghai University, Shanghai 200072, China
 全文: PDF(367 KB)   HTML
Abstract

We have improved the photovoltaic performance of 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs.

Key wordsorganic photovoltaic cells    squaraine    cathode buffer layer    power conversion efficiency    solution-process
收稿日期: 2017-03-29      出版日期: 2017-08-24
Corresponding Author(s): Bin WEI   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(3): 233-240.
Guo CHEN, Changfeng SI, Pengpeng ZHANG, Kunping GUO, Saihu PAN, Wenqing ZHU, Bin WEI. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer. Front. Mater. Sci., 2017, 11(3): 233-240.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0384-x
https://academic.hep.com.cn/foms/CN/Y2017/V11/I3/233
Fig.1  
Fig.2  
Fig.3  
CBL a) Jsc /(mA·cm−2) Voc /V FF /% PCE /% Rsb)/(Ω·cm2)
W/O 8.99 0.88 38 3.05 31.1
Bphen 10.74 0.93 44 4.34 17.6
Bphen-Liq(5%) 11.00 0.93 46 4.69 14.6
Bphen-Liq(10%) 11.32 0.93 46 4.90 13.8
Bphen-Liq(15%) 10.61 0.93 43 4.26 18.2
Liq 10.91 0.94 45 4.56 15.3
Tab.1  
Fig.4  
Fig.5  
Fig.6  
  
CBL thickness /nm Jsc /(mA?cm−2) Voc /V FF /% PCE /% Rs /(Ω?cm2)
0 8.99 0.88 38 3.05 31.1
4 10.63 0.93 43 4.27 15.7
6 11.06 0.93 46 4.70 14.1
8 11.32 0.93 46 4.90 13.8
10 11.11 0.93 44 4.59 15.8
  
1 Yu G, Gao  J, Hummelen J C , et al.. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
https://doi.org/10.1126/science.270.5243.1789
2 Li G, Zhu  R, Yang Y . Polymer solar cells. Nature Photonics, 2012, 6(3): 153–161
https://doi.org/10.1038/nphoton.2012.11
3 Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research, 2012, 45(5): 723–733
https://doi.org/10.1021/ar2002446 pmid: 22288572
4 Lin Y, Wang  J, Zhang Z G , et al.. An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170–1174
https://doi.org/10.1002/adma.201404317 pmid: 25580826
5 Zheng Z, Zhang  S, Zhang M , et al.. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range. Advanced Materials, 2015, 27(7): 1189–1194
https://doi.org/10.1002/adma.201404525 pmid: 25530506
6 Chen G, Sasabe  H, Sasaki Y , et al.. A series of squaraine dyes: effects of side chain and the number of hydroxyl groups on material properties and photovoltaic performance. Chemistry of Materials, 2014, 26(3): 1356–1364
https://doi.org/10.1021/cm4034929
7 Huang J, Li  C Z, Chueh  C C, et al.. 10.4% power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Advanced Energy Materials, 2015, 5(15): 3599–3606
https://doi.org/10.1002/aenm.201500406
8 Lee Y H, Kim  D H, Arul  N S, et al.. Improvement of the power conversion efficiency of organic photovoltaic cells with a P3HT layer fabricated by using a sonication process and having a vertically modulated nanoscale morphology. Applied Surface Science, 2013, 268: 156–162
https://doi.org/10.1016/j.apsusc.2012.12.045
9 Luo J, Xiao  L, Chen Z , et al.. Insulator MnO: Highly efficient and air-stable n-type doping layer for organic photovoltaic cells. Organic Electronics, 2010, 11(4): 664–669
https://doi.org/10.1016/j.orgel.2010.01.007
10 Chen G, Wang  T, Li C , et al.. Enhanced photovoltaic performance in inverted polymer solar cells using Li ion doped ZnO cathode buffer layer. Organic Electronics, 2016, 36: 50–56
https://doi.org/10.1016/j.orgel.2016.05.033
11 You J, Dou  L, Yoshimura K , et al.. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4: 1446
https://doi.org/10.1038/ncomms2411 pmid: 23385590
12 He Z, Xiao  B, Liu F , et al.. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174–179
https://doi.org/10.1038/nphoton.2015.6
13 Li S, Ye  L, Zhao W , et al.. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Advanced Materials, 2016, 28(42): 9423–9429
https://doi.org/10.1002/adma.201602776 pmid: 27606970
14 Wang J L, Yin  Q R, Miao  J S, et al.. Rational design of small molecular donor for solution-processed organic photovoltaics with 8.1% efficiency and high fill factor via multiple fluorine substituents and thiophene bridge. Advanced Functional Materials, 2015, 25(23): 3514–3523
https://doi.org/10.1002/adfm.201500190
15 Chen G, Sasabe  H, Sano T , et al.. Chloroboron(III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24(48): 484007 (9 pages)
16 Sasabe H, Igrashi  T, Sasaki Y , et al.. Soluble squaraine derivatives for 4.9% efficient organic photovoltaic cells. RSC Advances, 2014, 4(81): 42804–42807
https://doi.org/10.1039/C4RA08171D
17 Kan B, Li  M, Zhang Q , et al.. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. Journal of the American Chemical Society, 2015, 137(11): 3886–3893
https://doi.org/10.1021/jacs.5b00305 pmid: 25736989
18 Chen G, Sasabe  H, Igarashi T , et al.. Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14517–14534
https://doi.org/10.1039/C5TA01879J
19 Si C, Chen  G, Wei B . Progress of organic photovoltaic cells based on squaraine small molecule donors and fullerene acceptors. Chinese Journal of Organic Chemistry, 2016, 36(11): 2602–2618 (in Chinese) 
https://doi.org/10.6023/cjoc201605020
20 Wang S, Mayo  E I, Perez  M D, et al.. High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor. Applied Physics Letters, 2009, 94(23): 233304 (3 pages) 
https://doi.org/10.1063/1.3152011
21 Chen G, Sasabe  H, Wang X F , et al.. A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192(6): 10–14
https://doi.org/10.1016/j.synthmet.2014.02.018
22 Chen G, Sasabe  H, Wang Z , et al.. Co-evaporated bulk heterojunction solar cells with>6.0% efficiency. Advanced Materials, 2012, 24(20): 2768–2773
https://doi.org/10.1002/adma.201200234 pmid: 22513760
23 Wei G, Wang  S, Renshaw K , et al.. Solution-processed squaraine bulk heterojunction photovoltaic cells. ACS Nano, 2010, 4(4): 1927–1934
https://doi.org/10.1021/nn100195j pmid: 20359189
24 Chen G, Sasabe  H, Wang Z , et al.. Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics, 2012, 14(42): 14661–14666
https://doi.org/10.1039/c2cp42445b pmid: 23032516
25 Wei G, Wang  S, Sun K , et al.. Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells. Advanced Energy Materials, 2011, 1(2): 184–187
https://doi.org/10.1002/aenm.201100045
26 Wang T, Chen  C, Guo K , et al.. Improved performance of polymer solar cells by using inorganic, organic and doped cathode buffer layers. Chinese Physics B, 2016, 25(3): 428‒433
27 Tian M Q, Furuki  M, Iwasa I , et al.. Search for squaraine derivatives that can be sublimed without thermal decomposition. The Journal of Physical Chemistry B, 2002, 106(17): 4370–4376 doi:10.1021/jp013698r
28 Ambade R B, Ambade  S B, Mane  R S, et al.. Interfacial engineering importance of bilayered ZnO cathode buffer on the photovoltaic performance of inverted organic solar cells. ACS Applied Materials & Interfaces, 2015, 7(15): 7951–7960
https://doi.org/10.1021/am509125c pmid: 25804557
29 Chen G, Si  C, Tang Z , et al.. Temperature-dependent device performance of organic photovoltaic cells based on a squaraine dye. Synthetic Metals, 2016, 222: 293–298
https://doi.org/10.1016/j.synthmet.2016.11.007
30 Koster L J A ,  Mihailetchi V D ,  Ramaker R , et al.. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Applied Physics Letters, 2005, 86(12): 123509 (3 pages)
31 Blom P W M ,  Mihailetchi V D ,  Koster L J A , et al.. Device physics of polymer:fullerene bulk heterojunction solar cells. Advanced Materials, 2007, 19(12): 1551–1566
https://doi.org/10.1002/adma.200601093
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed