Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red
Alberto ESTRELLA GONZÁLEZ(), Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS
Department of Chemistry, Metropolitan Autonomous University-Iztapalapa, P.O. Box 55-532, C.P. 09340, México City, México
This study describes the development of mesostructured TiO2 photocatalysts modified with PO43− to improve its specific surface area and reduce the recombination rate of the electron?hole pairs. The mesoporous photocatalyst was successfully incorporated into a high specific surface area silica matrix by the hydrolysis reaction of tetraethyl orthosilicate (TEOS). Pluronic 123 and phosphoric acid were used as the directing agent for the structure of the mesoporous TiO2 and as a source of phosphorus, respectively. TiO2, P/TiO2, TiO2?SiO2 and P/TiO2?SiO2 materials were characterized by BET, XRD, TEM-EDS, FTIR and UV-vis DRS measurements. The photoactivity of TiO2?SiO2 nanocomposites containing 15 wt.% photocatalyst/silica was evaluated in the degradation reaction of anionic dyes with UV radiation. The proposed nanomaterials showed high potential for applications in the remediation of wastewater, being able to reuse in several cycles of reaction, maintaining its photoactivity and stability. The separation and recovery time of the material is reduced between cycles since no centrifugation or filtration processes are required after the photooxidation reaction.
Corresponding Author(s):
Alberto ESTRELLA GONZÁLEZ
引用本文:
. [J]. Frontiers of Materials Science, 2017, 11(3): 250-261.
Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red. Front. Mater. Sci., 2017, 11(3): 250-261.
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38 https://doi.org/10.1038/238037a0
pmid: 12635268
2
Han F, Kambala V S R, Srinivasan M, et al.. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General, 2009, 359(1–2): 25–40 https://doi.org/10.1016/j.apcata.2009.02.043
3
Reddy K M, Manorama S V, Reddy A R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78(1): 239–245 https://doi.org/10.1016/S0254-0584(02)00343-7
4
Mo S D, Ching W Y. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B: Condensed Matter and Materials Physics, 1995, 51(19): 13023–13032 https://doi.org/10.1103/PhysRevB.51.13023
pmid: 9978097
5
Pekakis P A, Xekoukoulotakis N P, Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 2006, 40(6): 1276–1286 https://doi.org/10.1016/j.watres.2006.01.019
pmid: 16510167
6
Almquist C B, Biswas P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis, 2002, 212(2): 145–156 https://doi.org/10.1006/jcat.2002.3783
7
Yoshitake H, Sugihara T, Tatsumi T. Preparation of Wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chemistry of Materials, 2002, 14(3): 1023–1029 https://doi.org/10.1021/cm010539b
8
Soler-Illia G J D A, Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic–inorganic composites. New Journal of Chemistry, 2000, 24(7): 493–499 https://doi.org/10.1039/b002518f
9
Soler-Illia G J D A, Scolan E, Louis A, et al.. Design of meso-structured titanium oxo based hybrid organic–inorganic networks. New Journal of Chemistry, 2001, 25(1): 156–165 https://doi.org/10.1039/b006139p
10
Calleja G, Serrano D P, Sanz R, et al.. Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Industrial & Engineering Chemistry Research, 2004, 43(10): 2485–2492 https://doi.org/10.1021/ie030646a
11
Calleja G, Serrano D P, Sanz R, et al.. Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol–gel route. Microporous and Mesoporous Materials, 2008, 111(1–3): 429–440 https://doi.org/10.1016/j.micromeso.2007.08.021
12
Wang W, Lu C, Ni Y, et al.. Enhanced performance of {001} facets dominated mesoporous TiO2 photocatalyst composed of high-reactive nanocrystals and mesoporous spheres. Applied Surface Science, 2013, 265: 438–442 https://doi.org/10.1016/j.apsusc.2012.11.025
13
Zhao Z, Sun Z, Zhao H, et al.. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. Journal of Materials Chemistry, 2012, 22(41): 21965–21971 https://doi.org/10.1039/c2jm35045a
14
Ismail A A, Bahnemann D W, Robben L, et al.. Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chemistry of Materials, 2010, 22(1): 108–116 https://doi.org/10.1021/cm902500e
15
Wang Z C, Shui H F. Effect of PO43– and PO43––SO42– modification of TiO2 on its photocatalytic properties. Journal of Molecular Catalysis A: Chemical, 2007, 263(1–2): 20–25 https://doi.org/10.1016/j.molcata.2006.08.017
16
Shi Q, Yang D, Jiang Z, et al.. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48 https://doi.org/10.1016/j.molcatb.2006.06.005
17
Kőrösi L, Dékány I. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280(1–3): 146–154 https://doi.org/10.1016/j.colsurfa.2006.01.052
18
Lin L, Lin W, Xie J L, et al.. Photocatalytic properties of phosphor-doped titania nanoparticles. Applied Catalysis B: Environmental, 2007, 75(1–2): 52–58 https://doi.org/10.1016/j.apcatb.2007.03.016
19
Yu H F, Zhang Z W, Hu F C. Phase stabilities and photocatalytic activities of P/Zn–TiO2 nanoparticles able to operate under UV-vis light irradiation. Journal of Alloys and Compounds, 2008, 465(1–2): 484–490 https://doi.org/10.1016/j.jallcom.2007.10.127
20
Li F, Jiang Y, Xia M, et al.. Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. The Journal of Physical Chemistry C, 2009, 113(42): 18134–18141 https://doi.org/10.1021/jp902558z
21
Shan A Y, Ghazi T I M, Rashid S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 2010, 389(1–2): 1–8 https://doi.org/10.1016/j.apcata.2010.08.053
22
Zhu B, Zou L. Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. Journal of Environmental Management, 2009, 90(11): 3217–3225 https://doi.org/10.1016/j.jenvman.2009.04.008
pmid: 19523747
23
Jin L, Dai B. TiO2 activation using acid-treated vermiculite as a support: Characteristics and photoreactivity. Applied Surface Science, 2012, 258(8): 3386–3392 https://doi.org/10.1016/j.apsusc.2011.11.017
24
Stathatos E, Papoulis D, Aggelopoulos C A, et al.. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. Journal of Hazardous Materials, 2012, 211–212: 68–76 https://doi.org/10.1016/j.jhazmat.2011.11.055
pmid: 22177018
25
Chen Y, Wang K, Lou L. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1–2): 281–287 https://doi.org/10.1016/j.jphotochem.2003.12.012
26
Li Y, Kim S J. Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. The Journal of Physical Chemistry B, 2005, 109(25): 12309–12315 https://doi.org/10.1021/jp0512917
pmid: 16852519
27
Yu J C, Zhang L, Zheng Z, et al.. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials, 2003, 15(11): 2280–2286 https://doi.org/10.1021/cm0340781
28
Monshi A, Foroughi M R, Monshi M R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160 https://doi.org/10.4236/wjnse.2012.23020
29
Yu J C, Zhang L Z, Yu J G. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New Journal of Chemistry, 2002, 26(4): 416–420 https://doi.org/10.1039/b109173e
30
Thommes M, Kaneko K, Neimark A V, et al.. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069
31
Nadtochenko V, Denisov N, Gorenberg A, et al.. Correlations for photocatalytic activity and spectral features of the absorption band edge of TiO2 modified by thiourea. Applied Catalysis B: Environmental, 2009, 91(1–2): 460–469 https://doi.org/10.1016/j.apcatb.2009.06.015
32
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. physica status solidi, 1966, 15(2): 627–637
33
Yamashita H, Ichihashi Y, Harada M, et al.. Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO2 powder catalysts. Journal of Catalysis, 1996, 158(1): 97–101 https://doi.org/10.1006/jcat.1996.0010
34
Rahman I A, Vejayakumaran P, Sipaut C S, et al.. Size-dependent physicochemical and optical properties of silica nanoparticles. Materials Chemistry and Physics, 2009, 114(1): 328–332 https://doi.org/10.1016/j.matchemphys.2008.09.068
35
Connor P A, McQuillan A J. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15(8): 2916–2921 https://doi.org/10.1021/la980894p
36
Pucher P, Benmami M, Azouani R, et al.. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General, 2007, 332(2): 297–303 https://doi.org/10.1016/j.apcata.2007.08.031
37
Lachheb H, Puzenat E, Houas A, et al.. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 2002, 39(1): 75–90 https://doi.org/10.1016/S0926-3373(02)00078-4
38
Zhu H, Jiang R, Xiao L, et al.. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. Journal of Hazardous Materials, 2009, 169(1–3): 933–940 https://doi.org/10.1016/j.jhazmat.2009.04.037
pmid: 19477069
39
Wang J, Li R, Zhang Z, et al.. Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation. Applied Catalysis A: General, 2008, 334(1–2): 227–233 https://doi.org/10.1016/j.apcata.2007.10.009