Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2018, Vol. 12 Issue (1): 83-94   https://doi.org/10.1007/s11706-018-0407-2
  本期目录
Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin
Amina Ben MIHOUB1,2, Boubakeur SAIDAT2, Youssef BAL3,4, Céline FROCHOT5, Régis VANDERESSE1, Samir ACHERAR1()
1. Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375, 1 Rue Grandville, BP 20451, 54001, Nancy Cedex, France
2. Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, (UATL) BP 37G Laghouat 03000, Algeria
3. Laboratory of Biomaterials & Transport Phenomena (LBTP), Quartier Ain D’Heb, 26000, Medea, Algeria
4. Department of Chemistry, Faculty of Sciences, University Saéd Dahleb of Blida (USDB), route de Soumaé, 09000, Blida, Algeria
5. Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine-CNRS, UMR 7274, 1 Rue Grandville, BP 20451, 54001, Nancy Cedex, France
 全文: PDF(547 KB)   HTML
Abstract

In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD-g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD-g-CS NPs vs. the classical ionic gelation method. New HA/β-CD-g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD-g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA):w(β-CD-g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD-g-CS NPs. Furthermore, the stability of β-CD-g-CS NPs and HA/β-CD-g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD-g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD-g-CS NPs. Finally, preliminary study of HA/β-CD-g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD-g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

Key wordsβ-cyclodextrin-grafted chitosan    hyaluronic acid    ionic gelation    drug delivery    physicochemical parameters control
收稿日期: 2017-10-18      出版日期: 2018-03-08
Corresponding Author(s): Samir ACHERAR   
 引用本文:   
. [J]. Frontiers of Materials Science, 2018, 12(1): 83-94.
Amina Ben MIHOUB, Boubakeur SAIDAT, Youssef BAL, Céline FROCHOT, Régis VANDERESSE, Samir ACHERAR. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin. Front. Mater. Sci., 2018, 12(1): 83-94.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-018-0407-2
https://academic.hep.com.cn/foms/CN/Y2018/V12/I1/83
Fig.1  
Fig.2  
Product Refs. Wavenumber/cm−1 Functional group
β-CD [28,30] 2922 and 1413 C−H stretching and O−H bending
1019, 1100 and 1150 C−O−C symmetric stretching
3277 O−H stretching
940 α-1,4 linkage skeletal vibration
Ts-β-CD [28,31] 1599 C=C stretching of benzene
1153 S=O stretching
941 α-1,4 linkage skeletal vibration
CS [28,30?31] 3200?3600 O−H and NH2 stretching
2921 and 2869 C−H stretching
1644 C=O and C−O stretch amide group
1156?1024 C−O−C and C−O stretching
1585 NH2 deformation
893 β-pyranyl vibration
Tab.1  
Fig.3  
Fig.4  
Trial pH c(β-CD-g-CS)/(mg·mL−1) n(β-CD-g-CS)/n(STPP) Particle size/nm PZ/mV PDI
A1 3 1 5/1 nd a) nd a) nd a)
A2 3.5 1 4/1 218.7 +37.6 0.24
A3 3.5 1 5/1 202.1 +40.9 0.22
A4 4 0.5 5/1 nd a) nd a) nd a)
A5 4 1 5/1 239.7 +36.2 0.25
A8 5 1 5/1 225.7 +32.1 0.17
A9 5 1 4/1 245.7 +29.0 0.33
A10 5 1.5 4/1 nd b) nd b) nd b)
A11 5 1.5 6/1 352.8 +25.1 0.24
Tab.2  
Fig.5  
Trial Particle size/nm ZP/mV PDI
A3 a) 202.11 +40.9 0.220
B1 b) 191.20 +41.7 0.193
B2 c) 187.17 +31.3 0.175
B3 b)c) 175.96 +31.5 0.070
Tab.3  
Fig.6  
Trial w(HA):w(β-CD-g-CS) Particle size/nm ZP/mV PDI Appearance
B3 a) 0:1 175.96 +31.5 0.070 medium opacity
C1 1:2 182.23 +25.8 0.210 medium opacity
C2 1:1 205.01 +17.8 0.352 high opacity
C3 2:1 193.20 −31.0 0.122 medium opacity
C4 3:1 nd nd nd low opacity
Tab.4  
Fig.7  
NPs Storage period/week Particle size/nm ZP/mV PDI
β-CD-g-CS 0 175.96 +31.5 0.07
1 181.32 +30.4 0.252
2 210.21 +28.7 0.341
3 217.11 +25.1 0.401
HA/β-CD-g-CS 0 193.20 −31.7 0.122
1 200.23 −31.5 0.149
2 212.71 −30.2 0.205
3 220.17 −29.8 0.227
Tab.5  
Fig.8  
NPs Size/nm ZP/mV PDI EE/%
Dox-HA/β-CD-g-CS 220.1 −28.2 0.183 47.6
Tab.6  
Fig.9  
1 Dey A, Koli  U, Dandekar P, et al.. Investigating behaviour of polymers in nanoparticles of chitosan oligosaccharides coated with hyaluronic acid. Polymer, 2016, 93: 44–52
https://doi.org/10.1016/j.polymer.2016.04.027
2 Al-Qadi S, Grenha  A, Remuñán-López  C. Chitosan and its derivatives as nanocarriers for siRNA delivery. Journal of Drug Delivery Science and Technology, 2012, 22(1): 29–42
https://doi.org/10.1016/S1773-2247(12)50003-1
3 Al-Qadi S, Alatorre-Meda  M, Zaghloul E M, et al.. Chitosan–hyaluronic acid nanoparticles for gene silencing: The role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids and Surfaces B: Biointerfaces, 2013, 103: 615–623
https://doi.org/10.1016/j.colsurfb.2012.11.009 pmid: 23274155
4 Amidi M, Mastrobattista  E, Jiskoot W, et al.. Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews, 2010, 62(1): 59–82
https://doi.org/10.1016/j.addr.2009.11.009 pmid: 19925837
5 Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 1998, 98(5): 1743–1754
https://doi.org/10.1021/cr970022c pmid: 11848947
6 Duchêne D, Bochot  A. Thirty years with cyclodextrins. International Journal of Pharmaceutics, 2016, 514(1): 58–72
https://doi.org/10.1016/j.ijpharm.2016.07.030 pmid: 27863683
7 Otero-Espinar F J,  Torres-Labandeira J J,  Alvarez-Lorenzo J C, et al.. Cyclodextrins in drug delivery systems. Journal of Drug Delivery Science and Technology, 2010, 20(4): 289–301
https://doi.org/10.1016/S1773-2247(10)50046-7
8 Zhang J, Ma  P X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Advanced Drug Delivery Reviews, 2013, 65(9): 1215–1233
https://doi.org/10.1016/j.addr.2013.05.001 pmid: 23673149
9 Prabaharan M, Mano  J F. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydrate Polymers, 2006, 63(2): 153–166
https://doi.org/10.1016/j.carbpol.2005.08.051
10 Zhang X G, Wu  Z M, Gao  X J, et al.. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydrate Polymers, 2009, 77(2): 394–401
https://doi.org/10.1016/j.carbpol.2009.01.018
11 Lu L, Shao  X, Jiao Y, et al.. Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanoparticles. Journal of Applied Polymer Science, 2014, 131(21): 41034
https://doi.org/10.1002/app.41034
12 Yuan Z, Ye  Y, Gao F, et al.. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics, 2013, 446(1–2): 191–198
https://doi.org/10.1016/j.ijpharm.2013.02.024 pmid: 23422276
13 Zhang H, Oh  M, Allen C, et al.. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules, 2004, 5(6): 2461–2468
https://doi.org/10.1021/bm0496211 pmid: 15530064
14 Fan W, Yan  W, Xu Z, et al.. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces, 2012, 90: 21–27
https://doi.org/10.1016/j.colsurfb.2011.09.042 pmid: 22014934
15 Nasti A, Zaki  N M, de Leonardis  P, et al.. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharmaceutical Research, 2009, 26(8): 1918–1930
https://doi.org/10.1007/s11095-009-9908-0 pmid: 19507009
16 Jonassen H, Kjoniksen  A L, Hiorth  M. Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid & Polymer Science, 2012, 290(10): 919–929
https://doi.org/10.1007/s00396-012-2604-3
17 Sawtarie N, Cai  Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids and Surfaces B: Biointerfaces, 2017, 157: 110–117
https://doi.org/10.1016/j.colsurfb.2017.05.055 pmid: 28578269
18 Gokce Y, Cengiz  B, Yildiz N, et al.. Ultrasonication of chitosan nanoparticle suspension: influence on particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462: 75–81
https://doi.org/10.1016/j.colsurfa.2014.08.028
19 Kedjarune-Leggat U,  Supaprutsakul C,  Chotigeat W. Ultrasound treatment increases transfection efficiency of low molecular weight chitosan in fibroblasts but not in KB cells. PLoS One, 2014, 9(3): e92076
https://doi.org/10.1371/journal.pone.0092076 pmid: 24651870
20 So M H, Ho  C M, Chen  R, et al.. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer. Chemistry – An Asian Journal, 2010, 5(6): 1322–1331
pmid: 20512785
21 Stern R, Kogan  G, Jedrzejas M J, et al.. The many ways to cleave hyaluronan. Biotechnology Advances, 2007, 25(6): 537–557
https://doi.org/10.1016/j.biotechadv.2007.07.001 pmid: 17716848
22 Sivadas N, O’Rourke  D, Tobin A, et al.. A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. International Journal of Pharmaceutics, 2008, 358(1–2): 159–167
https://doi.org/10.1016/j.ijpharm.2008.03.024 pmid: 18448288
23 Kalam M A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 2016, 89: 127–136
https://doi.org/10.1016/j.ijbiomac.2016.04.070 pmid: 27126165
24 Li L, Qian  Y, Jiang C, et al.. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials, 2012, 33(12): 3428–3445
https://doi.org/10.1016/j.biomaterials.2012.01.038 pmid: 22300743
25 Lokeshwar V B,  Mirza S,  Jordan A. Targeting hyaluronic acid family for cancer chemoprevention and therapy. Advances in Cancer Research, 2014, 123: 35–65
https://doi.org/10.1016/B978-0-12-800092-2.00002-2 pmid: 25081525
26 Mok H, Park  J W, Park  T G. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjugate Chemistry, 2007, 18(5): 1483–1489
https://doi.org/10.1021/bc070111o pmid: 17602578
27 Melton L D, Slessor  K N. Synthesis of monosubstituted cyclohexaamyloses. Carbohydrate Research, 1971, 18(1): 29–37
https://doi.org/10.1016/S0008-6215(00)80256-6
28 Gonil P, Sajomsang  W, Ruktanonchai U R, et al.. Novel quaternized chitosan containing β-cyclodextrin moiety: Synthesis, characterization and antimicrobial activity. Carbohydrate Polymers, 2011, 83(2): 905–913
https://doi.org/10.1016/j.carbpol.2010.08.080
29 Kievit F M, Wang  F Y, Fang  C, et al.. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. Journal of Controlled Release, 2011, 152(1): 76–83
https://doi.org/10.1016/j.jconrel.2011.01.024 pmid: 21277920
30 Ji J, Hao  S, Liu W, et al.. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 103–107
https://doi.org/10.1016/j.colsurfb.2010.11.005 pmid: 21112190
31 Yuan Z, Ye  Y, Gao F, et al.. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics, 2013, 446(1–2): 191–198
https://doi.org/10.1016/j.ijpharm.2013.02.024 pmid: 23422276
32 Prabaharan M, Gong  S. Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydrate Polymers, 2008, 73(1): 117–125
https://doi.org/10.1016/j.carbpol.2007.11.005
33 Ito T, Iida-Tanaka  N, Niidome T, et al.. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. Journal of Controlled Release, 2006, 112(3): 382–388
https://doi.org/10.1016/j.jconrel.2006.03.013 pmid: 16647780
34 Deng X, Cao  M, Zhang J, et al.. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14): 4333–4344
https://doi.org/10.1016/j.biomaterials.2014.02.006 pmid: 24565525
35 Singh R, Lillard  J W Jr. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 2009, 86(3): 215–223
https://doi.org/10.1016/j.yexmp.2008.12.004 pmid: 19186176
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed