Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin
1. Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375, 1 Rue Grandville, BP 20451, 54001, Nancy Cedex, France 2. Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, (UATL) BP 37G Laghouat 03000, Algeria 3. Laboratory of Biomaterials & Transport Phenomena (LBTP), Quartier Ain D’Heb, 26000, Medea, Algeria 4. Department of Chemistry, Faculty of Sciences, University Saéd Dahleb of Blida (USDB), route de Soumaé, 09000, Blida, Algeria 5. Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine-CNRS, UMR 7274, 1 Rue Grandville, BP 20451, 54001, Nancy Cedex, France
In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD-g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD-g-CS NPs vs. the classical ionic gelation method. New HA/β-CD-g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD-g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA):w(β-CD-g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD-g-CS NPs. Furthermore, the stability of β-CD-g-CS NPs and HA/β-CD-g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD-g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD-g-CS NPs. Finally, preliminary study of HA/β-CD-g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD-g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.
. [J]. Frontiers of Materials Science, 2018, 12(1): 83-94.
Amina Ben MIHOUB, Boubakeur SAIDAT, Youssef BAL, Céline FROCHOT, Régis VANDERESSE, Samir ACHERAR. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin. Front. Mater. Sci., 2018, 12(1): 83-94.
Dey A, Koli U, Dandekar P, et al.. Investigating behaviour of polymers in nanoparticles of chitosan oligosaccharides coated with hyaluronic acid. Polymer, 2016, 93: 44–52 https://doi.org/10.1016/j.polymer.2016.04.027
2
Al-Qadi S, Grenha A, Remuñán-López C. Chitosan and its derivatives as nanocarriers for siRNA delivery. Journal of Drug Delivery Science and Technology, 2012, 22(1): 29–42 https://doi.org/10.1016/S1773-2247(12)50003-1
3
Al-Qadi S, Alatorre-Meda M, Zaghloul E M, et al.. Chitosan–hyaluronic acid nanoparticles for gene silencing: The role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids and Surfaces B: Biointerfaces, 2013, 103: 615–623 https://doi.org/10.1016/j.colsurfb.2012.11.009
pmid: 23274155
4
Amidi M, Mastrobattista E, Jiskoot W, et al.. Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews, 2010, 62(1): 59–82 https://doi.org/10.1016/j.addr.2009.11.009
pmid: 19925837
Otero-Espinar F J, Torres-Labandeira J J, Alvarez-Lorenzo J C, et al.. Cyclodextrins in drug delivery systems. Journal of Drug Delivery Science and Technology, 2010, 20(4): 289–301 https://doi.org/10.1016/S1773-2247(10)50046-7
8
Zhang J, Ma P X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Advanced Drug Delivery Reviews, 2013, 65(9): 1215–1233 https://doi.org/10.1016/j.addr.2013.05.001
pmid: 23673149
9
Prabaharan M, Mano J F. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydrate Polymers, 2006, 63(2): 153–166 https://doi.org/10.1016/j.carbpol.2005.08.051
10
Zhang X G, Wu Z M, Gao X J, et al.. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydrate Polymers, 2009, 77(2): 394–401 https://doi.org/10.1016/j.carbpol.2009.01.018
11
Lu L, Shao X, Jiao Y, et al.. Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanoparticles. Journal of Applied Polymer Science, 2014, 131(21): 41034 https://doi.org/10.1002/app.41034
12
Yuan Z, Ye Y, Gao F, et al.. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics, 2013, 446(1–2): 191–198 https://doi.org/10.1016/j.ijpharm.2013.02.024
pmid: 23422276
13
Zhang H, Oh M, Allen C, et al.. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules, 2004, 5(6): 2461–2468 https://doi.org/10.1021/bm0496211
pmid: 15530064
14
Fan W, Yan W, Xu Z, et al.. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces, 2012, 90: 21–27 https://doi.org/10.1016/j.colsurfb.2011.09.042
pmid: 22014934
15
Nasti A, Zaki N M, de Leonardis P, et al.. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharmaceutical Research, 2009, 26(8): 1918–1930 https://doi.org/10.1007/s11095-009-9908-0
pmid: 19507009
16
Jonassen H, Kjoniksen A L, Hiorth M. Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid & Polymer Science, 2012, 290(10): 919–929 https://doi.org/10.1007/s00396-012-2604-3
17
Sawtarie N, Cai Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids and Surfaces B: Biointerfaces, 2017, 157: 110–117 https://doi.org/10.1016/j.colsurfb.2017.05.055
pmid: 28578269
18
Gokce Y, Cengiz B, Yildiz N, et al.. Ultrasonication of chitosan nanoparticle suspension: influence on particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462: 75–81 https://doi.org/10.1016/j.colsurfa.2014.08.028
19
Kedjarune-Leggat U, Supaprutsakul C, Chotigeat W. Ultrasound treatment increases transfection efficiency of low molecular weight chitosan in fibroblasts but not in KB cells. PLoS One, 2014, 9(3): e92076 https://doi.org/10.1371/journal.pone.0092076
pmid: 24651870
20
So M H, Ho C M, Chen R, et al.. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer. Chemistry – An Asian Journal, 2010, 5(6): 1322–1331
pmid: 20512785
Sivadas N, O’Rourke D, Tobin A, et al.. A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. International Journal of Pharmaceutics, 2008, 358(1–2): 159–167 https://doi.org/10.1016/j.ijpharm.2008.03.024
pmid: 18448288
23
Kalam M A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 2016, 89: 127–136 https://doi.org/10.1016/j.ijbiomac.2016.04.070
pmid: 27126165
24
Li L, Qian Y, Jiang C, et al.. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials, 2012, 33(12): 3428–3445 https://doi.org/10.1016/j.biomaterials.2012.01.038
pmid: 22300743
Mok H, Park J W, Park T G. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjugate Chemistry, 2007, 18(5): 1483–1489 https://doi.org/10.1021/bc070111o
pmid: 17602578
Gonil P, Sajomsang W, Ruktanonchai U R, et al.. Novel quaternized chitosan containing β-cyclodextrin moiety: Synthesis, characterization and antimicrobial activity. Carbohydrate Polymers, 2011, 83(2): 905–913 https://doi.org/10.1016/j.carbpol.2010.08.080
29
Kievit F M, Wang F Y, Fang C, et al.. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. Journal of Controlled Release, 2011, 152(1): 76–83 https://doi.org/10.1016/j.jconrel.2011.01.024
pmid: 21277920
30
Ji J, Hao S, Liu W, et al.. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 103–107 https://doi.org/10.1016/j.colsurfb.2010.11.005
pmid: 21112190
31
Yuan Z, Ye Y, Gao F, et al.. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics, 2013, 446(1–2): 191–198 https://doi.org/10.1016/j.ijpharm.2013.02.024
pmid: 23422276
32
Prabaharan M, Gong S. Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydrate Polymers, 2008, 73(1): 117–125 https://doi.org/10.1016/j.carbpol.2007.11.005
33
Ito T, Iida-Tanaka N, Niidome T, et al.. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. Journal of Controlled Release, 2006, 112(3): 382–388 https://doi.org/10.1016/j.jconrel.2006.03.013
pmid: 16647780
34
Deng X, Cao M, Zhang J, et al.. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14): 4333–4344 https://doi.org/10.1016/j.biomaterials.2014.02.006
pmid: 24565525