Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2018, Vol. 12 Issue (4): 361-367   https://doi.org/10.1007/s11706-018-0443-y
  本期目录
Construction of yolk--shell Fe3O4@C nanocubes for highly stable and efficient lithium-ion storage
Ruiping LIU(), Chao ZHANG, Xiaofan ZHANG, Fei GUO, Yue DONG, Qi WANG, Hanqing ZHAO
Department of Materials Science and Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
 全文: PDF(328 KB)   HTML
Abstract

The yolk–shell Fe3O4@C nanocubes were successfully synthesized through carbothermic reduction process from carbon-coated α-Fe2O3 precursor. The results show that the yolk–shell Fe3O4@C nanocubes are uniformly coated with a thin carbon layer, and a clear cavity about 150 nm in width between Fe3O4 core and carbon shell are formed due to the volume shrinkage during the reduction treatment. The obtained yolk–shell Fe3O4@C nanocubes exhibit excellent cycling stability (the discharge capacity is 709.7 mA·h/g after 100 cycles at the current density of 0.1C) and rate performance (1023.4 mA·h/g at 0.1C, 932.5 mA·h/g at 0.2C, 756.1 mA·h/g at 0.5C, 405.6 mA·h/g at 1C, and 332.3 mA·h/g at 2C, and more importantly, when the current density finally backs to 0.1C, a capacity of 776.8 mA·h/g can be restored). The outstanding lithium storage properties may be attributed to the unique yolk–shell structures.

Key wordsFe3O4    yolk--shell    nanocube    anode    lithium storage
收稿日期: 2018-07-03      出版日期: 2018-12-10
Corresponding Author(s): Ruiping LIU   
 引用本文:   
. [J]. Frontiers of Materials Science, 2018, 12(4): 361-367.
Ruiping LIU, Chao ZHANG, Xiaofan ZHANG, Fei GUO, Yue DONG, Qi WANG, Hanqing ZHAO. Construction of yolk--shell Fe3O4@C nanocubes for highly stable and efficient lithium-ion storage. Front. Mater. Sci., 2018, 12(4): 361-367.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-018-0443-y
https://academic.hep.com.cn/foms/CN/Y2018/V12/I4/361
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657
https://doi.org/10.1038/451652a pmid: 18256660
2 Wei Q, Xiong F, Tan S, et al.. Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Advanced Materials, 2017, 29(20): 1602300
https://doi.org/10.1002/adma.201602300 pmid: 28106303
3 Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
https://doi.org/10.1021/ja3091438 pmid: 23294028
4 Yu L, Wu H B, Lou X W D. Self-templated formation of hollow structures for electrochemical energy applications. Accounts of Chemical Research, 2017, 50(2): 293–301
https://doi.org/10.1021/acs.accounts.6b00480 pmid: 28128931
5 Heo J, Liu Y, Haridas A K, et al.. Carbon-coated ordered mesoporous SnO2 composite based anode material for high performance lithium-ion batteries. Journal of Nanoscience and Nanotechnology, 2018, 18(9): 6415–6421
https://doi.org/10.1166/jnn.2018.15688 pmid: 29677806
6 Wang Z F, Zhang X, Sun Y, et al.. In situ synthesis of nori-derived sponge-like N, P-codoped C/Co3O4 composite as advanced anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 740: 446–451
https://doi.org/10.1016/j.jallcom.2017.12.020
7 Xiong Q Q, Tu J P, Lu Y, et al.. Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: the highly powerful storage versus lithium as an anode for lithium ion batteries. The Journal of Physical Chemistry C, 2012, 116(10): 6495–6502
https://doi.org/10.1021/jp3002178
8 Wu C, Zhuang Q C, Wu Y X, et al.. Facile synthesis of Fe3O4 hollow spheres/carbon nanotubes composites for lithium ion batteries with high-rate capacity and improved long-cycle performance. Materials Letters, 2013, 113: 1–4
https://doi.org/10.1016/j.matlet.2013.09.029
9 Cao H Q, Liang R L, Qian D, et al.. L-serine-assisted synthesis of superparamagnetic Fe3O4 nanocubes for lithuium ion batteries. The Journal of Physical Chemistry C, 2011, 115(50): 24688–24695
https://doi.org/10.1021/jp2096482
10 Zhang W M, Wu X L, Hu J S, et al.. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Advanced Functional Materials, 2008, 18(24): 3941–3946
https://doi.org/10.1002/adfm.200801386
11 An Q, Lv F, Liu Q, et al.. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Letters, 2014, 14(11): 6250–6256
https://doi.org/10.1021/nl5025694 pmid: 25314630
12 Xin Q A, Gai L G, Wang Y, et al.. Hierarchically structured Fe3O4/C nanosheets for effective lithium-ion storage. Journal of Alloys and Compounds, 2017, 691: 592–599
https://doi.org/10.1016/j.jallcom.2016.08.331
13 Li H H, Xu R Y, Wang Y P, et al.. In situ synthesis of hierarchical mesoporous Fe3O4@C nanowires derived from coordination polymers for high-performance lithium-ion batteries. RSC Advances, 2014, 4(94): 51960–51965
https://doi.org/10.1039/C4RA09110H
14 Wang K, Wan G, Wang G, et al.. The construction of carbon-coated Fe3O4 yolk–shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption. Journal of Colloid and Interface Science, 2018, 511: 307–317
https://doi.org/10.1016/j.jcis.2017.10.018 pmid: 29031150
15 Liu W, Song M S, Kong B, et al.. Flexible and stretchable energy storage: recent advances and future perspectives. Advanced Materials, 2017, 29(1): 1603436
https://doi.org/10.1002/adma.201603436 pmid: 28042889
16 Liu R P, Zhang C, Wang Q, et al.. Facile synthesis of α-Fe2O3@C hollow spheres as ultra-long cycle performance anode materials for lithium ion battery. Journal of Alloys and Compounds, 2018, 742: 490–496
https://doi.org/10.1016/j.jallcom.2018.01.262
17 Song L, Zhang S. Formation of α-Fe2O3/FeOOH nanostructures with various morphologies by a hydrothermal route and their photocatalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1–3): 217–220
18 Zheng Y, Cheng Y, Wang Y, et al.. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. The Journal of Physical Chemistry B, 2006, 110(7): 3093–3097
https://doi.org/10.1021/jp056617q pmid: 16494314
19 Sun Z Z, Feng X M, Hou W H. Morphology-controlled synthesis of α-FeOOH and its derivatives. Nanotechnology, 2007, 18(45): 199–202
https://doi.org/10.1088/0957-4484/18/45/455607
20 Xiao H, Xia Y, Zhang W K, et al.. Template-free synthesis of hollow α-Fe2O3 microcubes for advanced lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(6): 2307–2312
https://doi.org/10.1039/C2TA00855F
21 Feng T, Qiao X, Wang H, et al.. A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe3O4@SiO2 as labels. Biosensors & Bioelectronics, 2016, 79(4): 48–54
https://doi.org/10.1016/j.bios.2015.11.001 pmid: 26686923
22 Fu Y, Wang X, Wang H, et al.. An Fe3O4@(C–MnO2) core–double-shell composite as a high-performance anode material for lithium ion batteries. RSC Advances, 2015, 5(19): 14531–14539
https://doi.org/10.1039/C4RA17043A
23 Nasibulin A G, Rackauskas S, Jiang H, et al.. Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Research, 2009, 2(5): 373–379
https://doi.org/10.1007/s12274-009-9036-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed