Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2019, Vol. 13 Issue (1): 77-86   https://doi.org/10.1007/s11706-019-0451-6
  本期目录
Formation mechanism of yolk--shell LaMnO3 microspheres prepared by P123-template and oxidation of NO
Lihui WU, Qiuling JIANG, Li WANG(), Ying WANG, Mengxue WANG
School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, China
 全文: PDF(4262 KB)   HTML
Abstract

The yolk–shell LaMnO3 perovskite microspheres were fabricated by a novel, simple and mild soft template approach. A series of template-P123 concentrations (0–6.12 mmol∙L−1) were employed to optimize the most complete spheres. When the concentration of P123 is 3.0 mmol·L−1, the obtained yolk–shell microspheres with a diameter of 200–700 nm were constructed by nanoparticles. The possible formation mechanism of the yolk–shell microspheres was revealed step by step via XRD, SEM, TEM, EDS and HRTEM. Molecules of P123 were suitably mixed with solvents for double shelled vesicles through self-assembly, which interacted with metal complexes to form P123–metal vesicles. After the removal of P123 and citric acid by calcination at 700 °C, the yolk–shell LaMnO3 microspheres with through-channels were obtained. Through-channels on the surface were due to citric acid and the solid core was attributed to the shrink of inner vesicles. Prepared yolk–shell microsphere samples possessed a larger surface area and a higher maximum NO conversion value of 78% at 314 °C for NO oxidation, compared with samples without the yolk–shell structure.

Key wordsperovskite    yolk--shell    microspheres    NO oxidation
收稿日期: 2018-10-14      出版日期: 2019-03-07
Corresponding Author(s): Li WANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2019, 13(1): 77-86.
Lihui WU, Qiuling JIANG, Li WANG, Ying WANG, Mengxue WANG. Formation mechanism of yolk--shell LaMnO3 microspheres prepared by P123-template and oxidation of NO. Front. Mater. Sci., 2019, 13(1): 77-86.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-019-0451-6
https://academic.hep.com.cn/foms/CN/Y2019/V13/I1/77
Sample c(P123)/(mmol?L−1) n(citric acid)/mol
LM-0 0.02
LM-2.0 2.04 0.02
LM-2.7 2.72 0.02
LM-3.0 3.06 0.02
LM-4.0 4.08 0.02
LM-6.1 6.12 0.02
LM-CA-F 3.06
Tab.1  
Fig.1  
Sample Unit-cell parameters Crystal size/nm Interplanar space/nm
a/nm b/nm c/nm
LM-6.1 0.3885 0.3885 0.3885 18.2 0.2738
LM-4.0 0.3885 0.3885 0.3885 17.9 0.2744
LM-3.0 0.3883 0.3883 0.3883 17.8 0.2738
LM-2.7 0.3878 0.3878 0.3878 17.1 0.2736
LM-2.0 0.3873 0.3873 0.3873 17.9 0.2747
LM-0 0.3886 0.3886 0.3886 18.3 0.2741
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Sample Surface area/(m2·g−1) Pore size/nm Pore volume/(cm3·g−1)
LM-0 12 49 0.06
LM-3.0 15 68 0.15
Tab.3  
Fig.8  
Catalyst Preparation method Reaction condition η(NO)/% Ref.
La0.9MnO3 sol–gel method 100 ppm NO; 10% O2; 30000 h−1; 250 °C 50 [5]
LaMnO3 sol–gel method 100 ppm NO; 10% O2; 30000 h−1; 300 °C 73 [2]
La0.9Sr0.1MnO3 sol–gel method 650 ppm NO; 6% O2; 123500 h−1; 350 °C 64.9 [21]
La0.9Ca0.1MnO3 sol–gel method 100 ppm NO; 10% O2; 30000 h−1; 300 °C 82 [4]
LaMnO3 sol–gel method 400 ppm NO; 8% O2; 30000 h−1; 350 °C 62 [29]
La0.9Sr0.1MnO3 sol–gel method 400 ppm NO; 8% O2; 30000 h−1; 350 °C 62.5 [30]
LaMnO3 soft-template method 400 ppm NO; 8% O2; 30000 h−1; 314 °C 78 this work
LaMnO3 sol–gel method 400 ppm NO; 8% O2; 30000 h−1; 356 °C 56 this work
Tab.4  
1 ZHong, Z Wang, XLi. Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview. Catalysis Science & Technology, 2017, 7(16): 3440–3452
https://doi.org/10.1039/C7CY00760D
2 JChen, M Shen, XWang, et al.. Catalytic performance of NO oxidation over LaMeO3 (Me = Mn, Fe, Co) perovskite prepared by the sol–gel method. Catalysis Communications, 2013, 37: 105–108
https://doi.org/10.1016/j.catcom.2013.03.039
3 ZWang, F Lin, SJiang, et al.. Ceria substrate–oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2. Fuel, 2016, 166: 352–360
https://doi.org/10.1016/j.fuel.2015.11.012
4 MShen, Z Zhao, JChen, et al.. Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation. Journal of Rare Earths, 2013, 31(2): 119–123
https://doi.org/10.1016/S1002-0721(12)60244-0
5 JChen, M Shen, XWang, et al.. The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation. Applied Catalysis B: Environmental, 2013, 134–135: 251–257
https://doi.org/10.1016/j.apcatb.2013.01.027
6 DShang, Q Zhong, WCai. Influence of the preparation method on the catalytic activity of Co/Zr1−xCexO2 for NO oxidation. Journal of Molecular Catalysis A: Chemical, 2015, 399: 18–24
https://doi.org/10.1016/j.molcata.2015.01.015
7 YWen, C Zhang, HHe, et al.. Catalytic oxidation of nitrogen monoxide over La1−xCexCoO3 perovskites. Catalysis Today, 2007, 126(3–4): 400–405
https://doi.org/10.1016/j.cattod.2007.06.032
8 SZhong, Y Sun, HXin, et al.. NO oxidation over Ni–Co perovskite catalysts. Chemical Engineering Journal, 2015, 275: 351–356
https://doi.org/10.1016/j.cej.2015.04.046
9 ZWang, X Sun, JLiu, et al.. The NO oxidation performance over Cu/Ce0.8Zr0.2O2 catalyst. Surfaces & Interfaces, 2017, 6: 103–109
https://doi.org/10.1016/j.surfin.2016.12.003
10 SBie, Y Zhu, JSu, et al.. One-pot fabrication of yolk–shell structured La0.9Sr0.1CoO3 perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(44): 22448–22453
https://doi.org/10.1039/C5TA05271H
11 BWang, Q Yu, SZhang, et al.. Gas sensing with yolk–shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sensors and Actuators B: Chemical, 2018, 258: 1215–1222
https://doi.org/10.1016/j.snb.2017.12.018
12 YZhai, J J Whitten, P B Zetterlund, et al.. Synthesis of hollow polydopamine nanoparticles using miniemulsion templating. Polymer, 2016, 105: 276–283
https://doi.org/10.1016/j.polymer.2016.10.038
13 W AEl-Said, A S Moharram, E M Hussein, et al.. Design, synthesis, anticorrosion efficiency, and applications of novel Gemini surfactants for preparation of small-sized hollow spheres mesoporous silica nanoparticles. Materials Chemistry and Physics, 2018, 211: 123–136
https://doi.org/10.1016/j.matchemphys.2018.02.013
14 XLuo, Z Pan, FPei, et al.. In situ growth of hollow Cu2O spheres using anionic vesicles as soft templates. Journal of Industrial and Engineering Chemistry, 2018, 59: 410–415
https://doi.org/10.1016/j.jiec.2017.10.052
15 HRan, L Han, S AChe. Synthesis of silica hollow spheres with diameter around 50 nm by anionic surfactant. Chemical Research in Chinese Universities, 2012, 28(3): 361–363
https://doi.org/10.1016/j.mencom.2012.05.021
16 L SLin, J Song, H HYang, et al.. Yolk–shell nanostructures: design, synthesis, and biomedical applications. Advanced Materials, 2018, 30(6): 1704639
https://doi.org/10.1002/adma.201704639 pmid: 29280201
17 HXu, W Wang. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angewandte Chemie International Edition, 2007, 46(9): 1489–1492
https://doi.org/10.1002/anie.200603895 pmid: 17226881
18 A MCao, J S Hu, H P Liang, et al.. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angewandte Chemie International Edition, 2005, 44(28): 4391–4395
https://doi.org/10.1002/anie.200500946 pmid: 15942965
19 JZhang, D Jiang, ZChen, et al.. Synthesis of calcium phosphate fluoride hybrid hollow spheres. Materials Letters, 2013, 91: 35–38
https://doi.org/10.1016/j.matlet.2012.09.048
20 D EDischer, A Eisenberg. Polymer vesicles. Science, 2002, 297(5583): 967–973
https://doi.org/10.1126/science.1074972 pmid: 12169723
21 J AOnrubia, B Pereda-Ayo, UDe-La-Torre, et al.. Key factors in Sr-doped LaBO3 (B= Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Applied Catalysis B: Environmental, 2017, 213: 198–210
https://doi.org/10.1016/j.apcatb.2017.04.068
22 HOver, Y D Kim, A P Seitsonen, et al.. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science, 2000, 287(5457): 1474–1476
https://doi.org/10.1126/science.287.5457.1474 pmid: 10688793
23 J SElias, K A Stoerzinger, W T Hong, et al.. In situ spectroscopy and mechanistic insights into CO oxidation on transition-metal-substituted ceria nanoparticles. ACS Catalysis, 2017, 7(10): 6843–6857
https://doi.org/10.1021/acscatal.7b01600
24 JHwang, R R Rao, L Giordano, et al.. Perovskites in catalysis and electrocatalysis. Science, 2017, 358(6364): 751–756
https://doi.org/10.1126/science.aam7092 pmid: 29123062
25 XWang, X L Wu, Y G Guo, et al.. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Advanced Functional Materials, 2010, 20(10): 1680–1686
https://doi.org/10.1002/adfm.200902295
26 XWei, P Hug, RFigi, et al.. Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion. Applied Catalysis B: Environmental, 2010, 94(1–2): 27–37
https://doi.org/10.1016/j.apcatb.2009.10.017
27 JChen, Z He, GLi, et al.. Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Applied Catalysis B: Environmental, 2017, 209: 146–154
https://doi.org/10.1016/j.apcatb.2017.02.066
28 GLeofanti, M Padovan, GTozzola, et al.. Surface area and pore texture of catalysts. Catalysis Today, 1998, 41(1–3): 207–219
https://doi.org/10.1016/S0920-5861(98)00050-9
29 GQi, W Li. Pt-free, LaMnO3 based lean NOx trap catalysts. Catalysis Today, 2012, 184(1): 72–77
https://doi.org/10.1016/j.cattod.2011.11.012
30 C HKim, G Qi, KDahlberg, et al.. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science, 2010, 327(5973): 1624–1627
https://doi.org/10.1126/science.1184087 pmid: 20339068
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed