Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2019, Vol. 13 Issue (2): 206-215   https://doi.org/10.1007/s11706-019-0464-1
  本期目录
Structural whiteness of the multi-component glaze dependence on amorphous photonic crystals
Hongquan ZHAN1(), Chuanqi WU1, Ce DENG1, Xiaohong LI1, Zhipeng XIE2, Changan WANG2
1. School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
2. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(1375 KB)   HTML
Abstract

A kind of enhancing mechanism of structural whiteness dependence on amorphous photonic crystal (APC) structure is introduced in this paper. In the glaze system composed of albite, kaolin, talc, calcite, quartz, titanium dioxide and zinc oxide, the APC structure will be produced by using quartz as a variable to induce the phase separation. Under different polarities between Ti, Zn etc. and Si ion, the separated spheres with the core–shell structure can be obtained and then make up opal-like APCs in the glaze layer. In addition to inner and outer layers of core–shell spheres, the calculated results of refractive indices clearly show the great difference between the particles and the matrix. As a result of different refractive indices, the multiple scatting of visible light plays a key role in the structural whiteness. However, due to the decrease of the cationic content, APCs with the reverse opal structure would be formed in the interface between glaze and body. Ultimately, the glaze appearance reveals extremely high structural whiteness due to the special APC structure.

Key wordsstructural whiteness    amorphous photonic crystal    core--shell structure
收稿日期: 2019-03-21      出版日期: 2019-06-19
Corresponding Author(s): Hongquan ZHAN   
 引用本文:   
. [J]. Frontiers of Materials Science, 2019, 13(2): 206-215.
Hongquan ZHAN, Chuanqi WU, Ce DENG, Xiaohong LI, Zhipeng XIE, Changan WANG. Structural whiteness of the multi-component glaze dependence on amorphous photonic crystals. Front. Mater. Sci., 2019, 13(2): 206-215.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-019-0464-1
https://academic.hep.com.cn/foms/CN/Y2019/V13/I2/206
Raw material η/wt.%
SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O I.L
Albite 69.10 17.20 0.50 3.50 1.00 0.50 7.00 1.20
Kaolin 45.91 38.53 0.16 0.56 0.14 0.40 0.21 13.60
Talc 57.78 0.34 0.07 1.84 29.04 ? ? 4.05
Quartz 99.30 0.25 0.03 0.21 0.09 ? ? ?
Calcite 0.38 ? ? 55.87 0.37 ? ? 43.28
Tab.1  
Fig.1  
Fig.2  
Fig.3  
EDS No. c/at.%
Mg Al Si Ca Ti Zn
EDS1 1.71 31.36 0.13 0 0.53 11.74
EDS2 1.62 4.87 23.64 2.86 1.07 5.51
EDS3 2.27 6.84 17.30 1.08 2.48 6.48
EDS4 1.93 5.66 21.82 2.70 1.54 4.56
EDS5 1.88 5.49 26.36 2.92 1.65 5.22
EDS6 1.51 3.74 24.82 2.20 1.35 4.38
EDS7 0.28 3.70 22.61 1.16 1.49 0.76
Tab.2  
Fig.4  
Fig.5  
EDS No. c/at.%
Mg Al Si Ca Ti Zn
EDS1 3.67 6.41 17.54 2.50 1.92 6.18
EDS2 1.70 7.42 24.36 2.66 1.29 4.34
EDS3 2.14 5.68 21.46 2.41 1.49 4.92
EDS4 1.32 6.34 22.11 1.47 0.85 2.48
EDS5 2.29 4.74 22.98 2.58 1.59 4.69
EDS6 1.31 5.82 25.02 2.10 1.26 3.33
EDS7 1.39 3.70 23.85 2.12 1.33 4.11
EDS8 0.39 4.78 27.78 0.95 0.66 1.88
EDS9 0.18 3.92 28.62 1.63 1.11 0.86
EDS10 0.30 6.50 43.69 1.42 1.17 2.88
Tab.3  
Fig.6  
1 R Casasola, J M Rincón, M Romero. Glass–ceramic glazes for ceramic tiles: a review. Journal of Materials Science, 2012, 47(2): 553–582
https://doi.org/10.1007/s10853-011-5981-y
2 M Gajek, J Partyka, M Leśniak, et al.. Gahnite white colour glazes in ZnO–R2O–RO–Al2O3–SiO2 system. Ceramics International, 2018, 44(13): 15845–15850
https://doi.org/10.1016/j.ceramint.2018.05.265
3 S Wang, C Peng, Z Huang, et al.. Clustering of zircon in raw glaze and its influence on optical properties of opaque glaze. Journal of the European Ceramic Society, 2014, 34(2): 541–547
https://doi.org/10.1016/j.jeurceramsoc.2013.08.018
4 K Pekkan, B Karasu. Production of opaque frits with low ZrO2 and ZnO contents and their industrial uses for fast single-fired wall tile glazes. Journal of Materials Science, 2009, 44(10): 2533–2540
https://doi.org/10.1007/s10853-009-3329-7
5 J Molera, T Pradell, N Salvadó, et al.. Evidence of tin oxide recrystallization in opacified lead glazes. Journal of the American Ceramic Society, 1999, 82(10): 2871–2875
https://doi.org/10.1111/j.1151-2916.1999.tb02170.x
6 S Teixeira, A M Bernardin. Development of TiO2 white glazes for ceramic tiles. Dyes and Pigments, 2009, 80(3): 292–296
https://doi.org/10.1016/j.dyepig.2008.07.017
7 E Bou, A Moreno, A Escardino, et al.. Microstructural study of opaque glazes obtained from frits of the system: SiO2–Al2O3–B2O3–(P2O5)–CaO–K2O–TiO2. Journal of the European Ceramic Society, 2007, 27(2–3): 1791–1796
https://doi.org/10.1016/j.jeurceramsoc.2006.04.148
8 S K Chen, H S Liu. FTIR, DTA and XRD study of sphene (CaTiSiO5) crystallization in a ceramic frit and a non-borate base glass. Journal of Materials Science, 1994, 29(11): 2921–2930
https://doi.org/10.1007/BF01117602
9 J Cai, M Lv, K Guan, et al.. Development of spinel opaque glazes for ceramic tiles. Journal of the European Ceramic Society, 2018, 38(1): 297–302
https://doi.org/10.1016/j.jeurceramsoc.2017.07.037
10 E Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
https://doi.org/10.1103/PhysRevLett.58.2059 pmid: 10034639
11 S John. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489
https://doi.org/10.1103/PhysRevLett.58.2486 pmid: 10034761
12 P Vukusic, J R Sambles. Photonic structures in biology. Nature, 2003, 424(6950): 852–855
https://doi.org/10.1038/nature01941 pmid: 12917700
13 Y Zhao, Z Xie, H Gu, et al.. Bio-inspired variable structural color materials. Chemical Society Reviews, 2012, 41(8): 3297–3317
https://doi.org/10.1039/c2cs15267c pmid: 22302077
14 H Noh, S F Liew, V Saranathan, et al.. How noniridescent colors are generated by quasi-ordered structures of bird feathers. Advanced Materials, 2010, 22(26–27): 2871–2880
https://doi.org/10.1002/adma.200903699 pmid: 20401903
15 K Yu, T Fan, S Lou, et al.. Biomimetic optical materials: Integration of nature’s design for manipulation of light. Progress in Materials Science, 2013, 58(6): 825–873
https://doi.org/10.1016/j.pmatsci.2013.03.003
16 S Kinoshita, S Yoshioka, J Miyazaki. Physics of structural colors. Reports on Progress in Physics, 2008, 71(7): 076401
https://doi.org/10.1088/0034-4885/71/7/076401
17 H Wang, K Q Zhang. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors, 2013, 13(4): 4192–4213
https://doi.org/10.3390/s130404192 pmid: 23539027
18 P N Dyachenko, J J do Rosário, E W Leib, et al.. Ceramic photonic glass for broadband omnidirectional reflection. ACS Photonics, 2014, 1(11): 1127–1133
https://doi.org/10.1021/ph500224r
19 F Liu, J Xiu, B Tang, et al.. Dynamic monitoring of thermally assisted assembly of colloidal crystals. Journal of Materials Science, 2017, 52(13): 7883–7892
https://doi.org/10.1007/s10853-017-1061-2
20 Q Jiang, J Gao, H Wei, et al.. Fabrication of photonic crystal heterostructures by a simple vertical deposition technique. Journal of Materials Science, 2014, 49(4): 1832–1838
https://doi.org/10.1007/s10853-013-7871-y
21 M Fujishima, S Sakata, T Iwasaki, et al.. Implantable photonic crystal for reflection-based optical sensing of biodegradation. Journal of Materials Science, 2008, 43(6): 1890–1896
https://doi.org/10.1007/s10853-007-2419-7
22 G Liu, L Zhou, G Zhang, et al.. Study on the binding strength of polystyrene photonic crystals on polyester fabrics. Journal of Materials Science, 2016, 51(19): 8953–8964
https://doi.org/10.1007/s10853-016-0146-7
23 B Li, J Zhou, L Li, et al.. Temperature-tuned photonic bandgap in polymer synthetic opals. Journal of Materials Science, 2005, 40(9–10): 2611–2613
https://doi.org/10.1007/s10853-005-2087-4
24 P D García, R Sapienza, A Blanco, et al.. Photonic glass: a novel random material for light. Advanced Materials, 2007, 19(18): 2597–2602
https://doi.org/10.1002/adma.200602426
25 P D García, R Sapienza, C López. Photonic glasses: a step beyond white paint. Advanced Materials, 2010, 22(1): 12–19
https://doi.org/10.1002/adma.200900827 pmid: 20217690
26 H Yin, B Dong, X Liu, et al.. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(27): 10798–10801
https://doi.org/10.1073/pnas.1204383109 pmid: 22615350
27 L Shi, Y Zhang, B Dong, et al.. Amorphous photonic crystals with only short-range order. Advanced Materials, 2013, 25(37): 5314–5320
https://doi.org/10.1002/adma.201301909 pmid: 24089349
28 P Shi, F Wang, J Zhu, et al.. Amorphous photonic crystals and structural colors in the phase separation glaze. Journal of the European Ceramic Society, 2018, 38(4): 2228–2233
https://doi.org/10.1016/j.jeurceramsoc.2017.10.036
29 P Shi, F Wang, J Zhu, et al.. Effect of phase separation on the Jian ware blue colored glaze with iron oxide. Ceramics International, 2018, 44(14): 16407–16413
https://doi.org/10.1016/j.ceramint.2018.06.051
30 P Shi, F Wang, J Zhu, et al.. Study on the Five dynasty sky-green glaze from Yaozhou kiln and its coloring mechanism. Ceramics International, 2017, 43(3): 2943–2949
https://doi.org/10.1016/j.ceramint.2016.11.019
31 J Zhu, P Shi, F Wang, et al.. Preparation of separative-phase fancy glaze derived from iron ore slag. Ceramics International, 2016, 42(4): 5250–5257
https://doi.org/10.1016/j.ceramint.2015.12.052
32 X Li, J Lu, X Yu, et al.. Imitation of ancient black-glazed Jian bowls (Yohen Tenmoku): Fabrication and characterization. Ceramics International, 2016, 42(14): 15269–15273
https://doi.org/10.1016/j.ceramint.2016.06.027
33 C Xu, W Li, X Lu, et al.. Unveiling the science behind the tea bowls from the Jizhou kiln. Part II. Microstructures and the coloring mechanism. Ceramics International, 2018, 44(16): 19461–19473
https://doi.org/10.1016/j.ceramint.2018.07.183
34 H Zhan, C Wu, C Deng, et al.. Formation mechanism of titania based opacified glaze with novel core–shell nanostructure. Journal of the European Ceramic Society, 2019, 39(4): 1668–1674
https://doi.org/10.1016/j.jeurceramsoc.2018.12.013
35 A B Rosenthal, S H Garofalini. Structural role of zinc oxide in silica and soda-silica glasses. Journal of the American Ceramic Society, 1987, 70(11): 821–826
https://doi.org/10.1111/j.1151-2916.1987.tb05634.x
36 J Partyka, M Gajek, K Gasek. Effects of quartz grain size distribution on the structure of porcelain glaze. Ceramics International, 2014, 40(8): 12045–12053
https://doi.org/10.1016/j.ceramint.2014.04.044
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed