Upconversion (UC) lanthanide nanomaterials have attracted enormous attention in the last two decades thanks to their unique ability to convert low-energy infrared photons into high-energy photons. In this mini-review, we briefly discussed the recent achievements related to the direct utilization of UC optical nanomaterials for photocatalysis and photovoltaic applications. In particular, selected examples of UC-containing devices/nanocomposites with improved performance were covered. In addition, we outlined some challenges and future trends associated with the widespread usage of UC nanomaterials.
F Auzel. Upconversion and anti-Stokes processes with f and d ions in solids. Chemical Reviews, 2004, 104(1): 139–174 https://doi.org/10.1021/cr020357g
pmid: 14719973
2
Y Yu, T Huang, Y Wu, et al.. In-vitro and in-vivo imaging of prostate tumor using NaYF4: Yb, Er up-converting nanoparticles. Pathology Oncology Research, 2014, 20(2): 335–341 https://doi.org/10.1007/s12253-013-9700-7
pmid: 24234861
3
M V DaCosta, S Doughan, Y Han, et al.. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Analytica Chimica Acta, 2014, 832: 1–33 https://doi.org/10.1016/j.aca.2014.04.030
pmid: 24890691
4
S Wang, J Feng, S Song, et al.. Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging. CrystEngComm, 2013, 15(36): 7142–7151 https://doi.org/10.1039/c3ce40679b
5
R Ni, B Qian, C Liu, et al.. 3D printing of resin composites doped with upconversion nanoparticles for anti-counterfeiting and temperature detection. Optics Express, 2018, 26(19): 25481–25491 https://doi.org/10.1364/OE.26.025481
pmid: 30469649
6
M H Alkahtani, C L Gomes, P R Hemmer. Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing. Optics Letters, 2017, 42(13): 2451–2454 https://doi.org/10.1364/OL.42.002451
pmid: 28957257
7
X Ma, X Ni. Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell. Journal of Nanoparticle Research, 2013, 15(4): 1547 https://doi.org/10.1007/s11051-013-1547-z
8
J C Goldschmidt, S Fischer. Upconversion for photovoltaics — a review of materials, devices, and concepts for performance enhancement. Advanced Optical Materials, 2015, 3(4): 510–535 https://doi.org/10.1002/adom.201500024
9
R Arppe, I Hyppänen, N Perälä, et al.. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale, 2015, 7(27): 11746–11757 https://doi.org/10.1039/C5NR02100F
pmid: 26104183
10
J Liu, L Huang, X M Tian, et al.. Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy. International Journal of Nanomedicine, 2017, 12: 1–14 https://doi.org/10.2147/IJN.S118938
pmid: 28031709
11
J Chen, J X Zhao. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors, 2012, 12(3): 2414–2435 https://doi.org/10.3390/s120302414
pmid: 22736958
12
J Zhou, Q Liu, W Feng, et al.. Upconversion luminescent materials: advances and applications. Chemical Reviews, 2015, 115(1): 395–465 https://doi.org/10.1021/cr400478f
pmid: 25492128
13
E L Payrer, A L Joudrier, P Aschehoug, et al.. Up-conversion luminescence in Er/Yb-doped YF3 thin films deposited by PLI-MOCVD. Journal of Luminescence, 2017, 187: 247–254 https://doi.org/10.1016/j.jlumin.2017.02.051
14
S Liu, G De, Y Xu, et al.. Size, phase-controlled synthesis, the nucleation and growth mechanisms of NaYF4:Yb/Er nanocrystals. Journal of Rare Earths, 2018, 36(10): 1060–1066 https://doi.org/10.1016/j.jre.2018.01.025
15
H Kobayashi, K Fujii, T Nunokawa, et al.. Surface modification of Y2O3:Er,Yb upconversion nanoparticles prepared by laser ablation in water. Japanese Journal of Applied Physics, 2014, 53(5S1): 05FK04 https://doi.org/10.7567/JJAP.53.05FK04
16
H H T Vu, T S Atabaev, N D Nguyen, et al.. Luminescent core–shell Fe3O4@Gd2O3:Er3+, Li+ composite particles with enhanced optical properties. Journal of Sol-Gel Science and Technology, 2014, 71(3): 391–395 https://doi.org/10.1007/s10971-014-3382-9
17
F Rivera-Lopez, V Lavin. Upconversion/back-transfer losses and emission dynamics in Nd3+–Yb3+ co-doped phosphate glasses for multiple pump channel laser. Journal of Non-Crystalline Solids, 2018, 489: 84–90 https://doi.org/10.1016/j.jnoncrysol.2018.03.007
18
E Cavalli, F Angiuli, A Belletti, et al.. Luminescence spectroscopy of YVO4:Ln3+, Bi3+ (Ln3+ = Eu3+, Sm3+, Dy3+) phosphors. Optical Materials, 2014, 36(10): 1642–1648 https://doi.org/10.1016/j.optmat.2013.12.020
19
Q Lü, A Li, F Guo, et al.. The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser. Nanotechnology, 2008, 19(20): 205704 https://doi.org/10.1088/0957-4484/19/20/205704
pmid: 21825747
20
J Dong, W Gao, Q Han, et al.. Plasmon-enhanced upconversion photoluminescence: Mechanism and application. Reviews in Physics, 2019, 4: 100026 https://doi.org/10.1016/j.revip.2018.100026
21
H Zong, X Mu, M Sun. Physical principle and advances in plasmon-enhanced upconversion luminescence. Applied Materials Today, 2019, 15: 43–57 https://doi.org/10.1016/j.apmt.2018.12.015
22
D Kumar, S Verma, V Sharma, et al.. Synthesis, characterization and upconversion luminescence of core–shell nanocomposites NaYF4:Yb/Er@SiO2@Ag/Au. Vacuum, 2018, 157: 492–496 https://doi.org/10.1016/j.vacuum.2018.09.041
23
G Chen, H Liu, H Liang, et al.. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. The Journal of Physical Chemistry C, 2008, 112(31): 12030–12036 https://doi.org/10.1021/jp804064g
24
Y Bai, Y Wang, G Peng, et al.. Enhance upconversion photoluminescence intensity by doping Li+ in Ho3+ and Yb3+ codoped Y2O3 nanocrystals. Journal of Alloys and Compounds, 2009, 478(1–2): 676–678 https://doi.org/10.1016/j.jallcom.2008.11.114
25
T S Atabaev, Z Piao, Y H Hwang, et al.. Bifunctional Gd2O3:Er3+ particles with enhanced visible upconversion luminescence. Journal of Alloys and Compounds, 2013, 572: 113–117 https://doi.org/10.1016/j.jallcom.2013.03.249
26
M L Debasu, J C Riedl, J Rocha, et al.. The role of Li+ in the upconversion emission enhancement of (YYbEr)2O3 nanoparticles. Nanoscale, 2018, 10(33): 15799–15808 https://doi.org/10.1039/C8NR03608J
pmid: 30101238
27
Q Tian, W Yao, W Wu, et al.. NIR light-activated upconversion semiconductor photocatalysts. Nanoscale Horizons, 2019, 4(1): 10–25 https://doi.org/10.1039/C8NH00154E
28
C Byrne, G Subramanian, S C Pillai. Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2018, 6(3): 3531–3555 https://doi.org/10.1016/j.jece.2017.07.080
29
Q L Ye, X Yang, C Li, et al.. Synthesis of UV/NIR photocatalysts by coating TiO2 shell on peanut-like YF3:Yb,Tm upconversion nanocrystals. Materials Letters, 2013, 106: 238–241 https://doi.org/10.1016/j.matlet.2013.05.047
30
Z Chen, M L Fu. Recyclable magnetic Fe3O4@SiO2@β-NaYF4:Yb3+,Tm3+/TiO2 composites with NIR enhanced photocatalytic activity. Materials Research Bulletin, 2018, 107: 194–203 https://doi.org/10.1016/j.materresbull.2018.07.016
31
Z Xu, M Quintanilla, F Vetrone, et al.. Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Advanced Functional Materials, 2015, 25(20): 2950–2960 https://doi.org/10.1002/adfm.201500810
32
Q Tian, W Yao, W Wu, et al.. Efficient UV-Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10889–10899 https://doi.org/10.1021/acssuschemeng.7b02806
33
T S Atabaev. Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends. Frontiers of Materials Science, 2018, 12(3): 207–213 https://doi.org/10.1007/s11706-018-0413-4
34
M Zhang, Y Lin, T J Mullen, et al.. Improving hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. The Journal of Physical Chemistry Letters, 2012, 3(21): 3188–3192 https://doi.org/10.1021/jz301444a
pmid: 26296027
35
T S Atabaev, H H T Vu, M Ajmal, et al.. Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377 https://doi.org/10.1007/s00339-015-9108-1
36
F Gonell, M Haro, R S Sanchez, et al.. Photon up-conversion with lanthanide-doped oxide particles for solar H2 generation. The Journal of Physical Chemistry C, 2014, 118(21): 11279–11284 https://doi.org/10.1021/jp503743e
37
T N T Thuy, T S Atabaev, H H T Vu, et al.. TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7647–7650 https://doi.org/10.1166/jnn.2017.14772
38
W Yang, X Li, D Chi, et al.. Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. Nanotechnology, 2014, 25(48): 482001 https://doi.org/10.1088/0957-4484/25/48/482001
pmid: 25397916
39
A Shalav, B S Richards, T Trupke, et al.. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Applied Physics Letters, 2005, 86(1): 013505 (3 pages) https://doi.org/10.1063/1.1844592
40
G X Xie, J M Lin, J H Wu, et al.. Application of upconversion luminescence in dye-sensitized solar cells. Chinese Science Bulletin, 2011, 56(1): 96–101 https://doi.org/10.1007/s11434-010-4115-2
41
J Li, O Yin, L Zhao, et al.. Enhancing the photoelectric conversion efficiency of dye-sensitized solar cells using the upconversion luminescence materials Y2O3:Er3+ nanorods doped TiO2 photoanode. Materials Letters, 2018, 227: 209–212 https://doi.org/10.1016/j.matlet.2018.05.057
42
M J Lim, Y N Ko, Y C Kang, et al.. Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming TiO2 composite double layers with down/up converting phosphor dispersion. RSC Advances, 2014, 4(20): 10039–10042 https://doi.org/10.1039/c3ra47310d
43
H H T Vu, T S Atabaev, J Y Ahn, et al.. Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency. Journal of Materials Chemistry A, 2015, 3(20): 11130–11136 https://doi.org/10.1039/C5TA02363G
44
H H T Vu, T S Atabaev, D Pham-Cong, et al.. TiO2 nanofiber/nanoparticles composite photoelectrodes with improved light harvesting ability for dye-sensitized solar cells. Electrochimica Acta, 2016, 193: 166–171 https://doi.org/10.1016/j.electacta.2016.02.045
45
S Tombe, G Adam, H Heilbrunner, et al.. Optical and electronic properties of mixed halide (X= I, Cl, Br) methylammonium lead perovskite solar cells. Journal of Materials Chemistry C, 2017, 5(7): 1714–1723 https://doi.org/10.1039/C6TC04830G
46
F L Meng, J J Wu, E F Zhao, et al.. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. Nanoscale, 2017, 9(46): 18535–18545 https://doi.org/10.1039/C7NR05416E
pmid: 29164210
47
Q Guo, J Wu, Y Yang, et al.. High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core–shell upconversion nanoparticles. Journal of Power Sources, 2019, 426: 178–187 https://doi.org/10.1016/j.jpowsour.2019.04.039
48
M S Sebag, Z Hu, K O Lima, et al.. Microscopic evidence of upconversion-induced near-infrared light harvest in hybrid perovskite solar cells. ACS Applied Energy Materials, 2018, 1(8): 3537–3543 https://doi.org/10.1021/acsaem.8b00518
49
D Ma, Y Shen, T Su, et al.. Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Materials Chemistry Frontiers, 2019, 3(10): 2058–2065 https://doi.org/10.1039/C9QM00311H