1. College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Normal University, Wuhu 241002, China 2. School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
Y Pan, C Zhang, Y Lin, et al.. Electrocatalyst engineering and structure–activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63(6): 921–948 https://doi.org/10.1007/s40843-019-1242-1
3
I Raj, Y L Duan, D Kigen, et al.. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction. Frontiers of Materials Science, 2018, 12(3): 239–246 https://doi.org/10.1007/s11706-018-0425-0
4
W Z Wang, Y F Xu, Q Liu, et al.. One-dimensional hierarchical structured MoS2 with an ordered stacking of nanosheets: A facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19(2): 218–223 https://doi.org/10.1039/C6CE02108E
5
C G Morales-Guio, L A Stern, X Hu. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569 https://doi.org/10.1039/C3CS60468C
pmid: 24626338
6
C Xu, S J Peng, C L Tan, et al.. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(16): 5597–5601 https://doi.org/10.1039/C4TA00458B
7
H Wang, D Kong, P Johanes, et al.. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Letters, 2013, 13(7): 3426–3433 https://doi.org/10.1021/nl401944f
pmid: 23799638
8
C Tsai, K Chan, F Abild-Pedersen, et al.. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Physical Chemistry Chemical Physics, 2014, 16(26): 13156–13164 https://doi.org/10.1039/C4CP01237B
pmid: 24866567
9
Y Yin, Y Zhang, T Gao, et al.. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Advanced Materials, 2017, 29(28): 1700311 https://doi.org/10.1002/adma.201700311
pmid: 28523734
10
J T Zhang, Y L Chen, M Liu, et al.. 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Research, 2018, 11(9): 4587–4598 https://doi.org/10.1007/s12274-018-2040-x
N Masurkar, N K Thangavel, L M R Arava. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2018, 10(33): 27771–27779 https://doi.org/10.1021/acsami.8b07489
pmid: 30048115
13
M Chhowalla, H S Shin, G Eda, et al.. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275 https://doi.org/10.1038/nchem.1589
pmid: 23511414
14
Y Yang, S T Wang, J C Zhang, et al.. Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorganic Chemistry Frontiers, 2015, 2(10): 931–937 https://doi.org/10.1039/C5QI00126A
15
X Tian, Q Gao, H Zhang, et al.. Uniform small-sized MoS2 from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties. Nanoscale, 2018, 10(32): 15222–15228 https://doi.org/10.1039/C8NR02833H
pmid: 30062336
16
D Yang, R F Frindt. Powder X-ray diffraction of turbostratically stacked layer systems. Journal of Materials Research, 1996, 11(7): 1733–1738 https://doi.org/10.1557/JMR.1996.0217
17
H Fujimoto. Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon, 2003, 41(8): 1585–1592 https://doi.org/10.1016/S0008-6223(03)00116-7
18
T N Ramesh, R S Jayashree, P V Kamath. Disorder in layered hydroxides: DIFFaX simulation of the X-ray powder diffraction patterns of nickel hydroxide. Clays and Clay Minerals, 2003, 51(5): 570–576 https://doi.org/10.1346/CCMN.2003.0510511
L Cheng, W Huang, Q Gong, et al.. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863 https://doi.org/10.1002/anie.201402315
pmid: 24838978
21
Y Tang, Z Zhao, Y Wang, et al.. Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance. ACS Applied Materials & Interfaces, 2016, 8(47): 32324–32332 https://doi.org/10.1021/acsami.6b11230
pmid: 27933849
22
H Liu, B H Liu, H Guo, et al.. N-doped C-encapsulated scale-like yolk–shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy, 2018, 51: 639–648 https://doi.org/10.1016/j.nanoen.2018.07.021
23
S O Grim, L J Matienzo. X-ray photoelectron-spectroscopy of inorganic and organometallic compounds of molybdenum. Inorganic Chemistry, 1975, 14(5): 1014–1018 https://doi.org/10.1021/ic50147a013
24
X Guo, G L Cao, F Ding, et al.. A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(9): 5041–5046 https://doi.org/10.1039/C5TA00087D
25
W A Abdallah, A E Nelson. Characterization of MoSe2(0 0 0 1) and ion-sputtered MoSe2 by XPS. Journal of Materials Science, 2005, 40(9–10): 2679–2681 https://doi.org/10.1007/s10853-005-2104-7
26
X Zhang, X F Qiao, W Shi, et al.. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44(9): 2757–2785 https://doi.org/10.1039/C4CS00282B
pmid: 25679474
27
X Lu, M I B Utama, J Lin, et al.. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Letters, 2014, 14(5): 2419–2425 https://doi.org/10.1021/nl5000906
pmid: 24678857
28
J C Shaw, H L Zhou, Y Chen, et al.. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014, 7(4): 511–517 https://doi.org/10.1007/s12274-014-0417-z
29
Q Q Jiang, Y F Lu, Z X Huang, et al.. Facile solvent-thermal synthesis of ultrathin MoSe2 nanosheets for hydrogen evolution and organic dyes adsorption. Applied Surface Science, 2017, 402: 277–285 https://doi.org/10.1016/j.apsusc.2017.01.049
30
C Zhang, X Chen, Z W Peng, et al.. Phosphine-free synthesis and shape evolution of MoSe2 nanoflowers for electrocatalytic hydrogen evolution reactions. CrystEngComm, 2018, 20(18): 2491–2498 https://doi.org/10.1039/C8CE00159F
31
H Tang, H Huang, X S Wang, et al.. Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange. Applied Surface Science, 2016, 379: 296–303 https://doi.org/10.1016/j.apsusc.2016.04.086
32
M R Gao, M K Y Chan, Y Sun. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6(1): 7493 https://doi.org/10.1038/ncomms8493
pmid: 26138031
L Dong, S Lin, L Yang, et al.. Spontaneous exfoliation and tailoring of MoS2 in mixed solvents. Chemical Communications, 2014, 50(100): 15936–15939 https://doi.org/10.1039/C4CC07238C
pmid: 25382250
35
V C Tung, M J Allen, Y Yang, et al.. High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2009, 4(1): 25–29 https://doi.org/10.1038/nnano.2008.329
pmid: 19119278
36
A Midya, A Ghorai, S Mukherjee, et al.. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(12): 4534–4543 https://doi.org/10.1039/C5TA09003B
37
J O M Bockris, E C Potter. The mechanism of the cathodic hydrogen evolution reaction. Journal of the Electrochemical Society, 1952, 99(4): 169–186 https://doi.org/10.1149/1.2779692
38
Y Li, H Wang, L Xie, et al.. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299 https://doi.org/10.1021/ja201269b
pmid: 21510646
39
H Vrubel, T Moehl, M Grätzel, et al.. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49(79): 8985–8987 https://doi.org/10.1039/c3cc45416a
pmid: 23963048