Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2021, Vol. 15 Issue (3): 317-333   https://doi.org/10.1007/s11706-021-0563-7
  本期目录
Research progress of p-type Fe-based skutterudite thermoelectric materials
Xin TONG1,2, Zhiyuan LIU1,2(), Jianglong ZHU1,2, Ting YANG1,2, Yonggui WANG1,2, Ailin XIA1,2
1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Maanshan 243002, China
2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
 全文: PDF(6123 KB)   HTML
Abstract

Filled skutterudite is currently one of the most promising intermediate-temperature thermoelectric (TE) materials, having good thermoelectric transport performance and excellent mechanical properties. For the preparation of high-efficiency filled skutterudite TE devices, it is important to have p- and n-type filled skutterudite TE materials with matching performance. However, the current TE properties of p-type Fe-based filled skutterudite materials are worse than n-type filled skutterudite materials. Therefore, how to obtain high-performance p-type Fe-based filled skutterudite materials is the key to preparation of high-efficiency skutterudite-based TE devices. This review summarizes some methods for optimizing the thermal transport performance of p-type filled skutterudite materials at the atomic-molecular and nano-mesoscopic scale that have been used in recent years. These methods include doping, multi-atom filling, and use of low-dimensional structure and of nanocomposite. In addition, the synergistic optimization methods of the electrical and thermal transport parameters and advanced preparation technologies of p-type filled skutterudite materials in recent years are also briefly summarized. These optimizational methods and advanced preparation technologies can significantly improve the TE properties of p-type Fe-based filled skutterudite materials.

Key wordsp-type Fe-based filled skutterudite    lattice thermal conductivity    synergistic optimization    preparation technology    thermoelectric property
收稿日期: 2021-03-24      出版日期: 2021-09-24
Corresponding Author(s): Zhiyuan LIU   
 引用本文:   
. [J]. Frontiers of Materials Science, 2021, 15(3): 317-333.
Xin TONG, Zhiyuan LIU, Jianglong ZHU, Ting YANG, Yonggui WANG, Ailin XIA. Research progress of p-type Fe-based skutterudite thermoelectric materials. Front. Mater. Sci., 2021, 15(3): 317-333.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-021-0563-7
https://academic.hep.com.cn/foms/CN/Y2021/V15/I3/317
Fig.1  
Fig.2  
Fig.3  
p-type Fe-based filled skutterudite κ/(W·m−1·K−1) κL/(W·m−1·K−1) ZT Ref.
GaxCeFe3.5Co0.5Sb12−x/3 2.5 0.59 0.85 [28]
DyzCo2.5Fe1.5Sb12 1.98 1.1 0.66 [29]
YbxFeyCo4−ySb12 2 0.48 0.6 [30]
BaxYbyFezCo4−zSb12 2.1 0.7 0.7 [31]
InxCe0.9Fe3.5Ni0.5Sb12 0.8 0.6 0.9 [32]
CeyFe4−xNixSb12 2.1 0.68 0.87 [33]
DDyFe4−xNixSb12 1.6 0.78 1.08 [34]
Ca0.5Ce0.5Fe4−xNixSb12 1.7 0.5 0.85 [35]
YbxCo3FeSb12 1.8 0.85 [36]
Ce0.5Yb0.5FezCo4−zSb12 1.46 0.6 1.0 [37]
Ce0.45Nd0.45Fe3CoSb12 1.53 0.67 1.06 [38]
DD0.86Fe4Sb12 2 1.06 [39]
YbzFe4−xCoxSb12 2.25 0.5 0.56 [40]
CeFe4−xRuxSb12 2.32 0.74 0.95 [41]
Yb0.9Fe3CoSb12 2.7 0.62 [42]
CeyFe4−xMnxSb12 2.48 0.62 0.98 [43]
YbxFe4−yPtySb12 2.0 0.9 0.9 [44]
YbxLayFe2.7Co1.3Sb12 1.8 0.91 0.99 [45]
La0.8Ba0.01Ga0.1Ti0.1Fe3CoSb12 2.7 1.1 0.76 [46]
CezFe4−xCoxSb12 1.8 0.65 0.7 [47]
CaxCe1−xFe4Sb12 2.69 1.33 0.75 [48]
CeyFe3CoSb12 1.9 0.95 0.8 [49]
CeyFe4−xNixSb12 1.8 0.7 0.8 [50]
Ba0.15YbxCo3FeSb12 2.4 0.84 0.57 [51]
YbzFe4−xNixSb12 2.58 0.6 0.62 [52]
PrzFe4−xCoxSb12 1.9 0.8 0.89 [53]
Mm0.9Fe4−xCoxSb12 1.8 1.1 1.1 [54]
BaxYbyFe3CoSb12 2.6 0.59 0.82 [55]
LazFe4−xNixSb12 2.4 0.65 0.82 [56]
La0.8Ti0.1Ga0.1Fe3CoSb12 1.52 0.75 1.2 [57]
La1−zNdzFe4−xCoxSb12 2.1 0.73 0.82 [58]
La1−zYbzFe4−xNixSb12 2.2 0.7 0.77 [59]
Ce1−zYbzFe4−xCoxSb12 2 0.9 0.87 [60]
NdzFe4−xCoxSb12 2.07 0.5 0.91 [61]
(Pr1−zNdz)yFe4−xCoxSb12 2 0.7 0.84 [62]
La0.8Ti0.1Ga0.1Fe3CoSb12/xFe3Si 1.8 0.82 1.2 [63]
La0.8Tl0.1Ga0.1Fe3CoSb12 + graphene 1.7 0.85 1.0 [64]
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 L E Bell. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
https://doi.org/10.1126/science.1158899 pmid: 18787160
2 G Rogl, A Grytsiv, P Rogl, et al.. Multifilled nanocrystalline p-type didymium-skutterudites with ZT>1.2. Intermetallics, 2010, 18(12): 2435–2444
https://doi.org/10.1016/j.intermet.2010.08.041
3 J Yu, W Y Zhao, B Lei, et al.. Effects of Ge dopant on thermoelectric properties of barium and indium double-Filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1400–1405
https://doi.org/10.1007/s11664-012-2265-5
4 C Zhou, J Sakamoto, D Morelli. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. Journal of Electronic Materials, 2011, 40(5): 547–550
https://doi.org/10.1007/s11664-010-1444-5
5 M Benyahia, J B Vaney, E Leroy, et al.. Thermoelectric properties in double-filled Ce0.3InyFe1.5Co2.5Sb12 p-type skutterudites. Journal of Alloys and Compounds, 2017, 696(5): 1031–1038
https://doi.org/10.1016/j.jallcom.2016.12.040
6 L Zhang, F F Duan, X D Li, et al.. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12−xGex through spontaneous precipitate. Journal of Applied Physics, 2013, 114(8): 083715
https://doi.org/10.1063/1.4819889
7 Y Lei, W S Gao, R Zheng, et al.. Rapid synthesis, microstructure, and thermoelectric properties of skutterudites. Journal of Alloys and Compounds, 2019, 806(25): 537–542
https://doi.org/10.1016/j.jallcom.2019.07.231
8 W Zhao, Z Liu, Z Sun, et al.. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251
https://doi.org/10.1038/nature23667 pmid: 28905895
9 Z Liu, J Zhu, P Wei, et al.. Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension. ACS Applied Materials & Interfaces, 2019, 11(49): 45875–45884
https://doi.org/10.1021/acsami.9b16309 pmid: 31738501
10 Z Y Liu, J L Zhu, X Tong, et al.. A review of CoSb3-based skutterudite thermoelectric materials. Journal of Advanced Ceramics, 2020, 9(6): 647–673
https://doi.org/10.1007/s40145-020-0407-4
11 G Tan, W Liu, S Wang, et al.. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(40): 12657–12668
https://doi.org/10.1039/c3ta13024j
12 W Zhao, Z Liu, P Wei, et al.. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12(1): 55–60
https://doi.org/10.1038/nnano.2016.182 pmid: 27723733
13 C M Bhandari. Thermoelectric transport theory. In: Rowe D M, eds. CRC Handbook of Thermoelectrics. Boca Raton, USA: CRC Press, 1995
https://doi.org/10.1201/9781420049718
14 A V Ioffe, A F Ioffe. Thermal conductivity of semiconductors. Izvestiâ Akademii Nauk SSSR. Seriâ Fiziceskaâ, 1956, 20: 65–72
15 H Fröhlich. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361
https://doi.org/10.1080/00018735400101213
16 A S Alexandrov. Lattice polarons and switching in molecular nanowires and quantum dots. In: Korkin A, Labanowski J, Gusev E, et al.., eds. Nanotechnology for Electronic Materials and Devices. Boston, MA, USA: Springer, 2007, 305–356
https://doi.org/10.1007/978-0-387-49965-9_8
17 H Kim, M H Kim, M Kaviany. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. Journal of Applied Physics, 2014, 115(12): 123510
https://doi.org/10.1063/1.4869669
18 T Caillat, A Borshchevsky, J P Fleurial. Properties of single crystalline semiconducting CoSb3. Journal of Applied Physics, 1996, 80(8): 4442–4449
https://doi.org/10.1063/1.363405
19 F Duan, L Zhang, J Y Dong, et al.. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites. Journal of Applied Physics, 2015, 639(5): 68–73
20 G Tan, H Chi, W Liu, et al.. Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(32): 8372–8380
https://doi.org/10.1039/C5TC01739D
21 L W Fu, J Y Yang, Q H Jiang, et al.. Thermoelectric performance ehancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores. Journal of Electronic Materials, 2016, 45(3): 1240–1244
https://doi.org/10.1007/s11664-015-3973-4
22 N Shaheen, X Shen, M S Javed, et al.. High-temperature thermoelectric properties of Ge-substituted p-type Nd-filled skutterudites. Journal of Electronic Materials, 2017, 46(5): 2958–2963
https://doi.org/10.1007/s11664-016-5079-z
23 N Shaheen, M S Javed, H U Shan, et al.. Enhanced thermoelectric properties in Ge-doped and single-filled skutterudites prepared by unique melt-spinning method. Ceramics International, 2018, 44(11): 12610–12614
https://doi.org/10.1016/j.ceramint.2018.04.058
24 R Bhardwaj, B Gahtori, K K Johari, et al.. Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites. ACS Applied Energy Materials, 2019, 2(2): 1067–1076
https://doi.org/10.1021/acsaem.8b01609
25 W Jeitschko, D J Braun. Synthesis and crystal structure of the iron polyphosphide FeP4. Acta Crystallographica Section B, 1978, 34(11): 3196–3201
https://doi.org/10.1107/S056774087801047X
26 B C Sales, D Mandrus, R K Williams. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328
https://doi.org/10.1126/science.272.5266.1325
27 J Yang, W Zhang, S Q Bai, et al.. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R= La, Ce, and Sr). Applied Physics Letters, 2007, 90(19): 192111
https://doi.org/10.1063/1.2737422
28 J Kim, Y Ohishi, H Muta, et al.. Enhanced thermoelectric properties of Ga and Ce double-filled p-type skutterudites. Materials Transactions, 2019, 60(6): 1078–1082
https://doi.org/10.2320/matertrans.M2018386
29 K P Dabral, S Vitta. P-type high temperature thermoelectric behavior of Dy filled CoSb3 and Fe1.5Co2.5Sb12 and their magnetic properties. ACS Applied Energy Materials, 2020, 3(7): 6644–6656
https://doi.org/10.1021/acsaem.0c00794
30 C Zhou, D Morelli, X Zhou, et al.. Thermoelectric properties of p-type Yb-filled skutterudite YbxFeyCo4−ySb12. Intermetallics, 2011, 19(10): 1390–1393
https://doi.org/10.1016/j.intermet.2011.04.015
31 Y Dong, P Puneet, T M Tritt, et al.. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4−z-FezSb12. Journal of Applied Physics, 2012, 112(8): 083718
https://doi.org/10.1063/1.4759370
32 P Puneet, J He, S Zhu, et al.. Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. Journal of Applied Physics, 2012, 112(3): 033710
https://doi.org/10.1063/1.4740072
33 P F Qiu, R H Liu, J Yang, et al.. Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites. Journal of Applied Physics, 2012, 111(2): 023705
https://doi.org/10.1063/1.3677971
34 G Rogl, A Grytsiv, M Falmbigl, et al.. Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1−xNix)4Sb12 (0.13≤x≤0.25, 0.46≤y≤0.68). Journal of Alloys and Compounds, 2012, 537(5): 242–249
https://doi.org/10.1016/j.jallcom.2012.04.121
35 G J Tan, S Y Wang, Y G Yan, et al.. Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4−xNixSb12 skutterudites by adjusting the carrier concentration. Journal of Alloys and Compounds, 2012, 513(5): 328–333
https://doi.org/10.1016/j.jallcom.2011.10.042
36 Y Dong, P Puneet, T M Tritt, et al.. High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Physica Status Solidi: Rapid Research Letters, 2013, 7(6): 418–420
https://doi.org/10.1002/pssr.201307126
37 S Ballikaya, N Uzar, S Yildirim, et al.. Lower thermal conductivity and higher thermoelectric performance of Fe-substituted and Ce, Yb double-filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1622–1627
https://doi.org/10.1007/s11664-012-2357-2
38 R Liu, J Yang, X Chen, et al.. P-type skutterudites RxMyFe3CoSb12 (R, M= Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics, 2011, 19(11): 1747–1751
https://doi.org/10.1016/j.intermet.2011.06.010
39 G Rogl, A Grytsiv, P Rogl, et al.. A new generation of p-type didymium skutterudites with high ZT. Intermetallics, 2011, 19(4): 546–555
https://doi.org/10.1016/j.intermet.2010.12.001
40 K H Park, I H Kim, S M Choi, et al.. Preparation and thermoelectric properties of p-type Yb-filled skutterudites. Journal of Electronic Materials, 2013, 42(7): 1377–1381
https://doi.org/10.1007/s11664-012-2253-9
41 R Liu, P Qiu, X Shi, et al.. Influence of Ru substitution on the thermoelectric properties of Ce(Fe1−xRux)4Sb12 solid solutions. Journal of the Physical Society of Japan, 2013, 82(12): 124608
https://doi.org/10.7566/JPSJ.82.124608
42 K H Park, Y S Lim, W S Seo, et al.. Effects of heat treatment on the thermoelectric properties of Yb-filled skutterudites. Journal of the Korean Physical Society, 2013, 63(9): 1764–1767
https://doi.org/10.3938/jkps.63.1764
43 P Qiu, X Shi, R Liu, et al.. Thermoelectric properties of manganese-doped p-type skutterudites CeyFe4−xMnxSb12. Functional Materials Letters, 2013, 6(5): 1340003
https://doi.org/10.1142/S1793604713400031
44 J Y Cho, Z Ye, M M Tessema, et al.. Thermoelectric performance of p-type skutterudites YbxFe4−yPtySb12 (0.8≤x≤1, y = 1 and 0.5). Journal of Applied Physics, 2013, 113(14): 224
45 L Zhou, P Qiu, C Uher, et al.. Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics, 2013, 32: 209–213
https://doi.org/10.1016/j.intermet.2012.08.005
46 H Geng, T Ochi, S Suzuki, et al.. Thermoelectric properties of multifilled skutterudites with La as the main filler. Journal of Electronic Materials, 2013, 42(7): 1999–2005
https://doi.org/10.1007/s11664-013-2501-7
47 K H Park, S Lee, W S Seo, et al.. Synthesis and thermoelectric properties of CezFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 64(1): 84–88
https://doi.org/10.3938/jkps.64.84
48 Y G Yan, W Wong-Ng, L Li, et al.. Structures and thermoelectric properties of double-filled (CaxCe1−x)Fe4Sb12 skutterudites. Journal of Solid State Chemistry, 2014, 218: 221–229
https://doi.org/10.1016/j.jssc.2014.06.042
49 G J Tan, S Y Wang, X F Tang. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. Journal of Electronic Materials, 2014, 43(6): 1712–1717
https://doi.org/10.1007/s11664-013-2849-8
50 G Tan, Y Zheng, Y Yan, et al.. Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12. Journal of Alloys and Compounds, 2014, 584(25): 216–221
https://doi.org/10.1016/j.jallcom.2013.09.051
51 Y Dong, P Puneet, T M Tritt, et al.. High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. Journal of Materials Science, 2015, 50(1): 34–39
https://doi.org/10.1007/s10853-014-8562-z
52 W M Lee, D K Shin, I H Kim. Thermoelectric and transport properties of YbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2015, 44(6): 1432–1437
https://doi.org/10.1007/s11664-014-3401-1
53 D K Shin, I H Kim. Preparation and thermoelectric properties of p-type PrzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 65(12): 2071–2076
https://doi.org/10.3938/jkps.65.2071
54 T Dahal, S Gahlawat, Q Jie, et al.. Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4−xCoxSb12. Journal of Applied Physics, 2015, 117(5): 055101
https://doi.org/10.1063/1.4906954
55 Y Dong, G S Nolas, X Zeng, et al.. High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites. Journal of Materials Research, 2015, 30(17): 2558–2563
https://doi.org/10.1557/jmr.2015.156
56 W M Lee, D K Shin, I H Kim. Thermoelectric properties of LazFe4−xNixSb12 skutterudites. Journal of the Korean Physical Society, 2015, 66(2): 240–245
https://doi.org/10.3938/jkps.66.240
57 X F Meng, W Cai, Z H Liu, et al.. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition. Acta Materialia, 2015, 98(1): 405–415
https://doi.org/10.1016/j.actamat.2015.07.027
58 K M Song, D K Shin, I H Kim. Synthesis and thermoelectric properties of double-filled La1−zNdzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2015, 67(9): 1597–1602
https://doi.org/10.3938/jkps.67.1597
59 B J Jeon, D K Shin, I H Kim. Synthesis and thermoelectric properties of La1−zYbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1907–1913
https://doi.org/10.1007/s11664-015-4282-7
60 G S Joo, D K Shin, I H Kim. Synthesis and thermoelectric properties of p-type double-filled Ce1−zYbzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1251–1256
https://doi.org/10.1007/s11664-015-3984-1
61 D K Shin, I H Kim. Electronic transport and thermoelectric properties of p-type NdzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1234–1239
https://doi.org/10.1007/s11664-015-3967-2
62 D K Shin, I H Kim. Thermoelectric properties of p-type partially double-filled (Pr1−zNdz)yFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2016, 69(5): 798–805
https://doi.org/10.3938/jkps.69.798
63 S Peng, J Sun, B Cui, et al.. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in-situ formed Fe3Si nanoprecipitate. Inorganic Chemistry Frontiers, 2017, 4(10): 1697–1703
https://doi.org/10.1039/C7QI00304H
64 D D Qin, Y Liu, X F Meng, et al.. Graphene-enhanced thermoelectric properties of p-type skutterudites. Chinese Physics B, 2018, 27(4): 048402
https://doi.org/10.1088/1674-1056/27/4/048402
65 H Y Woo, G Son, K M Lee, et al.. Thermal conductivity reduction by tuning the rattler fraction in a p-type CeyYb1−yFe3CoSb12 double-filled skutterudite. Journal of the Korean Physical Society, 2020, 77(8): 667–672
https://doi.org/10.3938/jkps.77.667
66 T Dahal, H S Kim, S Gahlawat, et al.. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4−xCoxSb12. Acta Materialia, 2016, 117: 13–22
https://doi.org/10.1016/j.actamat.2016.06.060
67 J Yang, P Qiu, R Liu, et al.. Trends in electrical transport of p-type skutterudites RFe4Sb12 (R= Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Physical Review B, 2011, 84(23): 235205
https://doi.org/10.1103/PhysRevB.84.235205
68 G Tan, S Wang, X Tang, et al.. Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4−xGaxSb12. Journal of Solid State Chemistry, 2012, 196: 203–208
https://doi.org/10.1016/j.jssc.2012.06.019
69 L D Hicks, M S Dresselhaus. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993, 47(24): 16631–16634
https://doi.org/10.1103/PhysRevB.47.16631 pmid: 10006109
70 L D Hicks, M S Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727–12731
https://doi.org/10.1103/PhysRevB.47.12727 pmid: 10005469
71 L D Hicks, T C Harman, M S Dresselhaus. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Applied Physics Letters, 1993, 63(23): 3230–3232
https://doi.org/10.1063/1.110207
72 W P Halperin. Quantum size effects in metal particles. Reviews of Modern Physics, 1986, 58(3): 533–606
https://doi.org/10.1103/RevModPhys.58.533
73 M S Dresselhaus, G Chen, M Y Tang, et al.. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053
https://doi.org/10.1002/adma.200600527
74 Q Jie, J Zhou, X Shi, et al.. Strong impact of grain boundaries on the thermoelectric properties of non-equilibrium synthesized p-type Ce1.05Fe4Sb12.04 filled skutterudites with nanostructure. arXiv, 2010, 1006: 5715
75 G Rogl, M Zehetbauer, M Kerber, et al.. Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p- and n-type Sb-based skutterudites. Materials Science Forum, 2011, 667–669: 1089–1094
https://doi.org/10.4028/www.scientific.net/MSF.667-669.1089
76 G Tan, Y Zheng, X Tang. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Applied Physics Letters, 2013, 103(18): 183904
https://doi.org/10.1063/1.4827555
77 G Rogl, A Grytsiv, P Rogl, et al.. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta Materialia, 2014, 76(1): 434–448
https://doi.org/10.1016/j.actamat.2014.05.051
78 M Y Tafti, M Saleemi, M S Toprak, et al.. Fabrication and characterization of nanostructured thermoelectric FexCo1−xSb3. Open Chemistry, 2014, 13(1): 629–635
https://doi.org/10.1515/chem-2015-0074
79 L J Guo, Y M Zhang, Y Zheng, et al.. Super-rapid preparation of nanostructured NdxFe3CoSb12 compounds and their improved thermoelectric performance. Journal of Electronic Materials, 2016, 45(3): 1271–1277
https://doi.org/10.1007/s11664-015-3997-9
80 L Guo, Z Cai, X Xu, et al.. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3841–3847
https://doi.org/10.1166/jnn.2016.11900 pmid: 27451721
81 A J Minnich, M S Dresselhaus, Z F Ren, et al.. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479
https://doi.org/10.1039/b822664b
82 J F Li, W S Liu, L D Zhao, et al.. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158
https://doi.org/10.1038/asiamat.2010.138
83 S A Yamini, H Wang, D Ginting, et al.. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483
https://doi.org/10.1021/am502140h pmid: 24960418
84 J R Sootsman, H Kong, C Uher, et al.. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie International Edition, 2008, 47(45): 8618–8622
https://doi.org/10.1002/anie.200803934 pmid: 18846585
85 G J Tan, S Y Wang, H Li, et al.. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12. Journal of Solid State Chemistry, 2012, 187: 316–322
https://doi.org/10.1016/j.jssc.2012.01.045
86 J Yu, W Zhao, H Zhou, et al.. Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scripta Materialia, 2013, 68(8): 643–646
https://doi.org/10.1016/j.scriptamat.2012.12.029
87 Z Liu, W Zhu, X Nie, et al.. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. Journal of Materials Science Materials in Electronics, 2019, 30(13): 12493–12499
https://doi.org/10.1007/s10854-019-01609-1
88 D T Morelli, G P Meisner. Low temperature properties of the filled skutterudite CeFe4Sb12. Journal of Applied Physics, 1995, 77(8): 3777–3781
https://doi.org/10.1063/1.358552
89 X Shi, W Zhang, L D Chen, et al.. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Physical Review Letters, 2005, 95(18): 185503
https://doi.org/10.1103/PhysRevLett.95.185503 pmid: 16383914
90 L Guo, G Wang, K Peng, et al.. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scripta Materialia, 2016, 116: 26–30
https://doi.org/10.1016/j.scriptamat.2016.01.035
91 S H Bae, K H Lee, S M Choi. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials. Intermetallics, 2019, 105: 44–47
https://doi.org/10.1016/j.intermet.2018.11.010
92 K H Lee, S H Bae, S M Choi. Phase formation behavior and thermoelectric transport properties of p-type YbxFe3CoSb12 prepared by melt spinning and spark plasma sintering. Materials, 2019, 13(1): 87
https://doi.org/10.3390/ma13010087 pmid: 31877993
93 S I Kim, K H Lee, H A Mun, et al.. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109–114
https://doi.org/10.1126/science.aaa4166 pmid: 25838382
94 C Zhang, M de la Mata, Z Li, et al.. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy, 2016, 30: 630–638
https://doi.org/10.1016/j.nanoen.2016.10.056
95 C Zhang, H Ng, Z Li, et al.. Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2−xTe3 nanocomposites via a liquid-phase sintering process. ACS Applied Materials & Interfaces, 2017, 9(14): 12501–12510
https://doi.org/10.1021/acsami.7b01473 pmid: 28318220
96 X Meng, Z Liu, B Cui, et al.. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Advanced Energy Materials, 2017, 7(13): 1602582
https://doi.org/10.1002/aenm.201602582
97 X Meng, Y Liu, B Cui, et al.. High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20128–20137
https://doi.org/10.1039/C8TA07445C
98 Q Jie, H Wang, W Liu, et al.. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot- pressing. Physical Chemistry Chemical Physics, 2013, 15(18): 6809–6816
https://doi.org/10.1039/c3cp50327e pmid: 23546542
99 J Prado-Gonjal, P Vaqueiro, C Nuttall, et al.. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. Journal of Alloys and Compounds, 2017, 695(25): 3598–3604
https://doi.org/10.1016/j.jallcom.2016.11.404
100 Y Lan, A J Minnich, G Chen, et al.. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, 20(3): 357–376
https://doi.org/10.1002/adfm.200901512
101 X Zhou, G Wang, L Zhang, et al.. Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. Journal of Materials Chemistry, 2012, 22(7): 2958–2964
https://doi.org/10.1039/C2JM15010G
102 J R Szczech, J M Higgins, S Jin. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055
https://doi.org/10.1039/C0JM02755C
103 C J Vineis, A Shakouri, A Majumdar, et al.. Nanostructured thermoelectrics: Big efficiency gains from small features. Advanced Materials, 2010, 22(36): 3970–3980
https://doi.org/10.1002/adma.201000839 pmid: 20661949
104 R M German, P Suri, S J Park. Review: Liquid phase sintering. Journal of Materials Science, 2009, 44(1): 1–39
https://doi.org/10.1007/s10853-008-3008-0
105 J K Farrer, C B Carter, N Ravishankar. The effects of crystallography on grain-boundary migration in alumina. Journal of Materials Science, 2006, 41(3): 661–674
https://doi.org/10.1007/s10853-006-6482-2
106 M Valant, D Suvorov, R C Pullar, et al.. A mechanism for low-temperature sintering. Journal of the European Ceramic Society, 2006, 26(13): 2777–2783
https://doi.org/10.1016/j.jeurceramsoc.2005.06.026
107 J Yu, W Zhu, W Zhao, et al.. Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. Journal of Materials Science, 2020, 55(17): 7432–7440
https://doi.org/10.1007/s10853-020-04523-8
108 B Poudel, Q Hao, Y Ma, et al.. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
https://doi.org/10.1126/science.1156446 pmid: 18356488
109 X Yan, W Liu, H Wang, et al.. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy & Environmental Science, 2012, 5(6): 7543–7548
https://doi.org/10.1039/c2ee21554c
110 G H Zhu, H Lee, Y C Lan, et al.. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Physical Review Letters, 2009, 102(19): 196803
https://doi.org/10.1103/PhysRevLett.102.196803 pmid: 19518985
111 J Yang, Q Hao, H Wang, et al.. Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Physical Review B, 2009, 80(11): 115329
https://doi.org/10.1103/PhysRevB.80.115329
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed