1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Maanshan 243002, China 2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
Filled skutterudite is currently one of the most promising intermediate-temperature thermoelectric (TE) materials, having good thermoelectric transport performance and excellent mechanical properties. For the preparation of high-efficiency filled skutterudite TE devices, it is important to have p- and n-type filled skutterudite TE materials with matching performance. However, the current TE properties of p-type Fe-based filled skutterudite materials are worse than n-type filled skutterudite materials. Therefore, how to obtain high-performance p-type Fe-based filled skutterudite materials is the key to preparation of high-efficiency skutterudite-based TE devices. This review summarizes some methods for optimizing the thermal transport performance of p-type filled skutterudite materials at the atomic-molecular and nano-mesoscopic scale that have been used in recent years. These methods include doping, multi-atom filling, and use of low-dimensional structure and of nanocomposite. In addition, the synergistic optimization methods of the electrical and thermal transport parameters and advanced preparation technologies of p-type filled skutterudite materials in recent years are also briefly summarized. These optimizational methods and advanced preparation technologies can significantly improve the TE properties of p-type Fe-based filled skutterudite materials.
L E Bell. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461 https://doi.org/10.1126/science.1158899
pmid: 18787160
2
G Rogl, A Grytsiv, P Rogl, et al.. Multifilled nanocrystalline p-type didymium-skutterudites with ZT>1.2. Intermetallics, 2010, 18(12): 2435–2444 https://doi.org/10.1016/j.intermet.2010.08.041
3
J Yu, W Y Zhao, B Lei, et al.. Effects of Ge dopant on thermoelectric properties of barium and indium double-Filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1400–1405 https://doi.org/10.1007/s11664-012-2265-5
4
C Zhou, J Sakamoto, D Morelli. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. Journal of Electronic Materials, 2011, 40(5): 547–550 https://doi.org/10.1007/s11664-010-1444-5
5
M Benyahia, J B Vaney, E Leroy, et al.. Thermoelectric properties in double-filled Ce0.3InyFe1.5Co2.5Sb12 p-type skutterudites. Journal of Alloys and Compounds, 2017, 696(5): 1031–1038 https://doi.org/10.1016/j.jallcom.2016.12.040
6
L Zhang, F F Duan, X D Li, et al.. Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12−xGex through spontaneous precipitate. Journal of Applied Physics, 2013, 114(8): 083715 https://doi.org/10.1063/1.4819889
7
Y Lei, W S Gao, R Zheng, et al.. Rapid synthesis, microstructure, and thermoelectric properties of skutterudites. Journal of Alloys and Compounds, 2019, 806(25): 537–542 https://doi.org/10.1016/j.jallcom.2019.07.231
8
W Zhao, Z Liu, Z Sun, et al.. Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251 https://doi.org/10.1038/nature23667
pmid: 28905895
9
Z Liu, J Zhu, P Wei, et al.. Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension. ACS Applied Materials & Interfaces, 2019, 11(49): 45875–45884 https://doi.org/10.1021/acsami.9b16309
pmid: 31738501
10
Z Y Liu, J L Zhu, X Tong, et al.. A review of CoSb3-based skutterudite thermoelectric materials. Journal of Advanced Ceramics, 2020, 9(6): 647–673 https://doi.org/10.1007/s40145-020-0407-4
11
G Tan, W Liu, S Wang, et al.. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(40): 12657–12668 https://doi.org/10.1039/c3ta13024j
12
W Zhao, Z Liu, P Wei, et al.. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12(1): 55–60 https://doi.org/10.1038/nnano.2016.182
pmid: 27723733
13
C M Bhandari. Thermoelectric transport theory. In: Rowe D M, eds. CRC Handbook of Thermoelectrics. Boca Raton, USA: CRC Press, 1995 https://doi.org/10.1201/9781420049718
14
A V Ioffe, A F Ioffe. Thermal conductivity of semiconductors. Izvestiâ Akademii Nauk SSSR. Seriâ Fiziceskaâ, 1956, 20: 65–72
A S Alexandrov. Lattice polarons and switching in molecular nanowires and quantum dots. In: Korkin A, Labanowski J, Gusev E, et al.., eds. Nanotechnology for Electronic Materials and Devices. Boston, MA, USA: Springer, 2007, 305–356 https://doi.org/10.1007/978-0-387-49965-9_8
17
H Kim, M H Kim, M Kaviany. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. Journal of Applied Physics, 2014, 115(12): 123510 https://doi.org/10.1063/1.4869669
18
T Caillat, A Borshchevsky, J P Fleurial. Properties of single crystalline semiconducting CoSb3. Journal of Applied Physics, 1996, 80(8): 4442–4449 https://doi.org/10.1063/1.363405
19
F Duan, L Zhang, J Y Dong, et al.. Thermoelectric properties of Sn substituted p-type Nd filled skutterudites. Journal of Applied Physics, 2015, 639(5): 68–73
20
G Tan, H Chi, W Liu, et al.. Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(32): 8372–8380 https://doi.org/10.1039/C5TC01739D
21
L W Fu, J Y Yang, Q H Jiang, et al.. Thermoelectric performance ehancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores. Journal of Electronic Materials, 2016, 45(3): 1240–1244 https://doi.org/10.1007/s11664-015-3973-4
22
N Shaheen, X Shen, M S Javed, et al.. High-temperature thermoelectric properties of Ge-substituted p-type Nd-filled skutterudites. Journal of Electronic Materials, 2017, 46(5): 2958–2963 https://doi.org/10.1007/s11664-016-5079-z
23
N Shaheen, M S Javed, H U Shan, et al.. Enhanced thermoelectric properties in Ge-doped and single-filled skutterudites prepared by unique melt-spinning method. Ceramics International, 2018, 44(11): 12610–12614 https://doi.org/10.1016/j.ceramint.2018.04.058
24
R Bhardwaj, B Gahtori, K K Johari, et al.. Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites. ACS Applied Energy Materials, 2019, 2(2): 1067–1076 https://doi.org/10.1021/acsaem.8b01609
25
W Jeitschko, D J Braun. Synthesis and crystal structure of the iron polyphosphide FeP4. Acta Crystallographica Section B, 1978, 34(11): 3196–3201 https://doi.org/10.1107/S056774087801047X
26
B C Sales, D Mandrus, R K Williams. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328 https://doi.org/10.1126/science.272.5266.1325
27
J Yang, W Zhang, S Q Bai, et al.. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R= La, Ce, and Sr). Applied Physics Letters, 2007, 90(19): 192111 https://doi.org/10.1063/1.2737422
28
J Kim, Y Ohishi, H Muta, et al.. Enhanced thermoelectric properties of Ga and Ce double-filled p-type skutterudites. Materials Transactions, 2019, 60(6): 1078–1082 https://doi.org/10.2320/matertrans.M2018386
29
K P Dabral, S Vitta. P-type high temperature thermoelectric behavior of Dy filled CoSb3 and Fe1.5Co2.5Sb12 and their magnetic properties. ACS Applied Energy Materials, 2020, 3(7): 6644–6656 https://doi.org/10.1021/acsaem.0c00794
30
C Zhou, D Morelli, X Zhou, et al.. Thermoelectric properties of p-type Yb-filled skutterudite YbxFeyCo4−ySb12. Intermetallics, 2011, 19(10): 1390–1393 https://doi.org/10.1016/j.intermet.2011.04.015
31
Y Dong, P Puneet, T M Tritt, et al.. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4−z-FezSb12. Journal of Applied Physics, 2012, 112(8): 083718 https://doi.org/10.1063/1.4759370
32
P Puneet, J He, S Zhu, et al.. Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. Journal of Applied Physics, 2012, 112(3): 033710 https://doi.org/10.1063/1.4740072
33
P F Qiu, R H Liu, J Yang, et al.. Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites. Journal of Applied Physics, 2012, 111(2): 023705 https://doi.org/10.1063/1.3677971
34
G Rogl, A Grytsiv, M Falmbigl, et al.. Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1−xNix)4Sb12 (0.13≤x≤0.25, 0.46≤y≤0.68). Journal of Alloys and Compounds, 2012, 537(5): 242–249 https://doi.org/10.1016/j.jallcom.2012.04.121
35
G J Tan, S Y Wang, Y G Yan, et al.. Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4−xNixSb12 skutterudites by adjusting the carrier concentration. Journal of Alloys and Compounds, 2012, 513(5): 328–333 https://doi.org/10.1016/j.jallcom.2011.10.042
36
Y Dong, P Puneet, T M Tritt, et al.. High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Physica Status Solidi: Rapid Research Letters, 2013, 7(6): 418–420 https://doi.org/10.1002/pssr.201307126
37
S Ballikaya, N Uzar, S Yildirim, et al.. Lower thermal conductivity and higher thermoelectric performance of Fe-substituted and Ce, Yb double-filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1622–1627 https://doi.org/10.1007/s11664-012-2357-2
38
R Liu, J Yang, X Chen, et al.. P-type skutterudites RxMyFe3CoSb12 (R, M= Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics, 2011, 19(11): 1747–1751 https://doi.org/10.1016/j.intermet.2011.06.010
K H Park, I H Kim, S M Choi, et al.. Preparation and thermoelectric properties of p-type Yb-filled skutterudites. Journal of Electronic Materials, 2013, 42(7): 1377–1381 https://doi.org/10.1007/s11664-012-2253-9
41
R Liu, P Qiu, X Shi, et al.. Influence of Ru substitution on the thermoelectric properties of Ce(Fe1−xRux)4Sb12 solid solutions. Journal of the Physical Society of Japan, 2013, 82(12): 124608 https://doi.org/10.7566/JPSJ.82.124608
42
K H Park, Y S Lim, W S Seo, et al.. Effects of heat treatment on the thermoelectric properties of Yb-filled skutterudites. Journal of the Korean Physical Society, 2013, 63(9): 1764–1767 https://doi.org/10.3938/jkps.63.1764
43
P Qiu, X Shi, R Liu, et al.. Thermoelectric properties of manganese-doped p-type skutterudites CeyFe4−xMnxSb12. Functional Materials Letters, 2013, 6(5): 1340003 https://doi.org/10.1142/S1793604713400031
44
J Y Cho, Z Ye, M M Tessema, et al.. Thermoelectric performance of p-type skutterudites YbxFe4−yPtySb12 (0.8≤x≤1, y = 1 and 0.5). Journal of Applied Physics, 2013, 113(14): 224
45
L Zhou, P Qiu, C Uher, et al.. Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics, 2013, 32: 209–213 https://doi.org/10.1016/j.intermet.2012.08.005
46
H Geng, T Ochi, S Suzuki, et al.. Thermoelectric properties of multifilled skutterudites with La as the main filler. Journal of Electronic Materials, 2013, 42(7): 1999–2005 https://doi.org/10.1007/s11664-013-2501-7
47
K H Park, S Lee, W S Seo, et al.. Synthesis and thermoelectric properties of CezFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 64(1): 84–88 https://doi.org/10.3938/jkps.64.84
48
Y G Yan, W Wong-Ng, L Li, et al.. Structures and thermoelectric properties of double-filled (CaxCe1−x)Fe4Sb12 skutterudites. Journal of Solid State Chemistry, 2014, 218: 221–229 https://doi.org/10.1016/j.jssc.2014.06.042
49
G J Tan, S Y Wang, X F Tang. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. Journal of Electronic Materials, 2014, 43(6): 1712–1717 https://doi.org/10.1007/s11664-013-2849-8
50
G Tan, Y Zheng, Y Yan, et al.. Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12. Journal of Alloys and Compounds, 2014, 584(25): 216–221 https://doi.org/10.1016/j.jallcom.2013.09.051
51
Y Dong, P Puneet, T M Tritt, et al.. High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. Journal of Materials Science, 2015, 50(1): 34–39 https://doi.org/10.1007/s10853-014-8562-z
52
W M Lee, D K Shin, I H Kim. Thermoelectric and transport properties of YbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2015, 44(6): 1432–1437 https://doi.org/10.1007/s11664-014-3401-1
53
D K Shin, I H Kim. Preparation and thermoelectric properties of p-type PrzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 65(12): 2071–2076 https://doi.org/10.3938/jkps.65.2071
54
T Dahal, S Gahlawat, Q Jie, et al.. Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4−xCoxSb12. Journal of Applied Physics, 2015, 117(5): 055101 https://doi.org/10.1063/1.4906954
55
Y Dong, G S Nolas, X Zeng, et al.. High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites. Journal of Materials Research, 2015, 30(17): 2558–2563 https://doi.org/10.1557/jmr.2015.156
56
W M Lee, D K Shin, I H Kim. Thermoelectric properties of LazFe4−xNixSb12 skutterudites. Journal of the Korean Physical Society, 2015, 66(2): 240–245 https://doi.org/10.3938/jkps.66.240
57
X F Meng, W Cai, Z H Liu, et al.. Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition. Acta Materialia, 2015, 98(1): 405–415 https://doi.org/10.1016/j.actamat.2015.07.027
58
K M Song, D K Shin, I H Kim. Synthesis and thermoelectric properties of double-filled La1−zNdzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2015, 67(9): 1597–1602 https://doi.org/10.3938/jkps.67.1597
59
B J Jeon, D K Shin, I H Kim. Synthesis and thermoelectric properties of La1−zYbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1907–1913 https://doi.org/10.1007/s11664-015-4282-7
60
G S Joo, D K Shin, I H Kim. Synthesis and thermoelectric properties of p-type double-filled Ce1−zYbzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1251–1256 https://doi.org/10.1007/s11664-015-3984-1
61
D K Shin, I H Kim. Electronic transport and thermoelectric properties of p-type NdzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1234–1239 https://doi.org/10.1007/s11664-015-3967-2
62
D K Shin, I H Kim. Thermoelectric properties of p-type partially double-filled (Pr1−zNdz)yFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2016, 69(5): 798–805 https://doi.org/10.3938/jkps.69.798
63
S Peng, J Sun, B Cui, et al.. Enhanced thermoelectric and mechanical properties of p-type skutterudites with in-situ formed Fe3Si nanoprecipitate. Inorganic Chemistry Frontiers, 2017, 4(10): 1697–1703 https://doi.org/10.1039/C7QI00304H
64
D D Qin, Y Liu, X F Meng, et al.. Graphene-enhanced thermoelectric properties of p-type skutterudites. Chinese Physics B, 2018, 27(4): 048402 https://doi.org/10.1088/1674-1056/27/4/048402
65
H Y Woo, G Son, K M Lee, et al.. Thermal conductivity reduction by tuning the rattler fraction in a p-type CeyYb1−yFe3CoSb12 double-filled skutterudite. Journal of the Korean Physical Society, 2020, 77(8): 667–672 https://doi.org/10.3938/jkps.77.667
66
T Dahal, H S Kim, S Gahlawat, et al.. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4−xCoxSb12. Acta Materialia, 2016, 117: 13–22 https://doi.org/10.1016/j.actamat.2016.06.060
67
J Yang, P Qiu, R Liu, et al.. Trends in electrical transport of p-type skutterudites RFe4Sb12 (R= Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Physical Review B, 2011, 84(23): 235205 https://doi.org/10.1103/PhysRevB.84.235205
68
G Tan, S Wang, X Tang, et al.. Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4−xGaxSb12. Journal of Solid State Chemistry, 2012, 196: 203–208 https://doi.org/10.1016/j.jssc.2012.06.019
L D Hicks, M S Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727–12731 https://doi.org/10.1103/PhysRevB.47.12727
pmid: 10005469
71
L D Hicks, T C Harman, M S Dresselhaus. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Applied Physics Letters, 1993, 63(23): 3230–3232 https://doi.org/10.1063/1.110207
M S Dresselhaus, G Chen, M Y Tang, et al.. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053 https://doi.org/10.1002/adma.200600527
74
Q Jie, J Zhou, X Shi, et al.. Strong impact of grain boundaries on the thermoelectric properties of non-equilibrium synthesized p-type Ce1.05Fe4Sb12.04 filled skutterudites with nanostructure. arXiv, 2010, 1006: 5715
75
G Rogl, M Zehetbauer, M Kerber, et al.. Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p- and n-type Sb-based skutterudites. Materials Science Forum, 2011, 667–669: 1089–1094 https://doi.org/10.4028/www.scientific.net/MSF.667-669.1089
76
G Tan, Y Zheng, X Tang. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Applied Physics Letters, 2013, 103(18): 183904 https://doi.org/10.1063/1.4827555
77
G Rogl, A Grytsiv, P Rogl, et al.. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta Materialia, 2014, 76(1): 434–448 https://doi.org/10.1016/j.actamat.2014.05.051
78
M Y Tafti, M Saleemi, M S Toprak, et al.. Fabrication and characterization of nanostructured thermoelectric FexCo1−xSb3. Open Chemistry, 2014, 13(1): 629–635 https://doi.org/10.1515/chem-2015-0074
79
L J Guo, Y M Zhang, Y Zheng, et al.. Super-rapid preparation of nanostructured NdxFe3CoSb12 compounds and their improved thermoelectric performance. Journal of Electronic Materials, 2016, 45(3): 1271–1277 https://doi.org/10.1007/s11664-015-3997-9
80
L Guo, Z Cai, X Xu, et al.. Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3841–3847 https://doi.org/10.1166/jnn.2016.11900
pmid: 27451721
81
A J Minnich, M S Dresselhaus, Z F Ren, et al.. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479 https://doi.org/10.1039/b822664b
82
J F Li, W S Liu, L D Zhao, et al.. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158 https://doi.org/10.1038/asiamat.2010.138
83
S A Yamini, H Wang, D Ginting, et al.. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483 https://doi.org/10.1021/am502140h
pmid: 24960418
84
J R Sootsman, H Kong, C Uher, et al.. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie International Edition, 2008, 47(45): 8618–8622 https://doi.org/10.1002/anie.200803934
pmid: 18846585
85
G J Tan, S Y Wang, H Li, et al.. Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12. Journal of Solid State Chemistry, 2012, 187: 316–322 https://doi.org/10.1016/j.jssc.2012.01.045
86
J Yu, W Zhao, H Zhou, et al.. Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scripta Materialia, 2013, 68(8): 643–646 https://doi.org/10.1016/j.scriptamat.2012.12.029
87
Z Liu, W Zhu, X Nie, et al.. Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. Journal of Materials Science Materials in Electronics, 2019, 30(13): 12493–12499 https://doi.org/10.1007/s10854-019-01609-1
88
D T Morelli, G P Meisner. Low temperature properties of the filled skutterudite CeFe4Sb12. Journal of Applied Physics, 1995, 77(8): 3777–3781 https://doi.org/10.1063/1.358552
89
X Shi, W Zhang, L D Chen, et al.. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Physical Review Letters, 2005, 95(18): 185503 https://doi.org/10.1103/PhysRevLett.95.185503
pmid: 16383914
90
L Guo, G Wang, K Peng, et al.. Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scripta Materialia, 2016, 116: 26–30 https://doi.org/10.1016/j.scriptamat.2016.01.035
91
S H Bae, K H Lee, S M Choi. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials. Intermetallics, 2019, 105: 44–47 https://doi.org/10.1016/j.intermet.2018.11.010
92
K H Lee, S H Bae, S M Choi. Phase formation behavior and thermoelectric transport properties of p-type YbxFe3CoSb12 prepared by melt spinning and spark plasma sintering. Materials, 2019, 13(1): 87 https://doi.org/10.3390/ma13010087
pmid: 31877993
93
S I Kim, K H Lee, H A Mun, et al.. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109–114 https://doi.org/10.1126/science.aaa4166
pmid: 25838382
94
C Zhang, M de la Mata, Z Li, et al.. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy, 2016, 30: 630–638 https://doi.org/10.1016/j.nanoen.2016.10.056
95
C Zhang, H Ng, Z Li, et al.. Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2−xTe3 nanocomposites via a liquid-phase sintering process. ACS Applied Materials & Interfaces, 2017, 9(14): 12501–12510 https://doi.org/10.1021/acsami.7b01473
pmid: 28318220
96
X Meng, Z Liu, B Cui, et al.. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Advanced Energy Materials, 2017, 7(13): 1602582 https://doi.org/10.1002/aenm.201602582
97
X Meng, Y Liu, B Cui, et al.. High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20128–20137 https://doi.org/10.1039/C8TA07445C
98
Q Jie, H Wang, W Liu, et al.. Fast phase formation of double-filled p-type skutterudites by ball-milling and hot- pressing. Physical Chemistry Chemical Physics, 2013, 15(18): 6809–6816 https://doi.org/10.1039/c3cp50327e
pmid: 23546542
99
J Prado-Gonjal, P Vaqueiro, C Nuttall, et al.. Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. Journal of Alloys and Compounds, 2017, 695(25): 3598–3604 https://doi.org/10.1016/j.jallcom.2016.11.404
100
Y Lan, A J Minnich, G Chen, et al.. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, 20(3): 357–376 https://doi.org/10.1002/adfm.200901512
101
X Zhou, G Wang, L Zhang, et al.. Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. Journal of Materials Chemistry, 2012, 22(7): 2958–2964 https://doi.org/10.1039/C2JM15010G
102
J R Szczech, J M Higgins, S Jin. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055 https://doi.org/10.1039/C0JM02755C
103
C J Vineis, A Shakouri, A Majumdar, et al.. Nanostructured thermoelectrics: Big efficiency gains from small features. Advanced Materials, 2010, 22(36): 3970–3980 https://doi.org/10.1002/adma.201000839
pmid: 20661949
J K Farrer, C B Carter, N Ravishankar. The effects of crystallography on grain-boundary migration in alumina. Journal of Materials Science, 2006, 41(3): 661–674 https://doi.org/10.1007/s10853-006-6482-2
J Yu, W Zhu, W Zhao, et al.. Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. Journal of Materials Science, 2020, 55(17): 7432–7440 https://doi.org/10.1007/s10853-020-04523-8
108
B Poudel, Q Hao, Y Ma, et al.. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638 https://doi.org/10.1126/science.1156446
pmid: 18356488
109
X Yan, W Liu, H Wang, et al.. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy & Environmental Science, 2012, 5(6): 7543–7548 https://doi.org/10.1039/c2ee21554c
110
G H Zhu, H Lee, Y C Lan, et al.. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Physical Review Letters, 2009, 102(19): 196803 https://doi.org/10.1103/PhysRevLett.102.196803
pmid: 19518985
111
J Yang, Q Hao, H Wang, et al.. Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Physical Review B, 2009, 80(11): 115329 https://doi.org/10.1103/PhysRevB.80.115329