Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2021, Vol. 15 Issue (3): 334-351   https://doi.org/10.1007/s11706-021-0567-3
  本期目录
Nanodiamonds as nanomaterial for biomedical field
Sarah GARIFO1, Dimitri STANICKI1, Gamze AYATA1, Robert N. MULLER1,2, Sophie LAURENT1,2()
1. General, Organic and Biomedical Chemistry Unit, Nuclear Magnetic Resonance (NMR) and Molecular Imaging Laboratory, University of Mons (UMONS), Avenue Maistriau 19, 7000 Mons, Belgium
2. Center for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
 全文: PDF(1030 KB)   HTML
Abstract

Recent advances in nanotechnology have attracted significant attention to nanodiamonds (NDs) in both industrial and research areas thanks to their remarkable intrinsic properties: large specific area, poor cytotoxicity, chemical resistance, magnetic and optical properties, ease of large-scale production, and surface reactivity make them suitable for numerous applications, including electronics, optics, sensors, polishing materials, and more recently, biological purposes. Growing interest in diamond platforms for bioimaging and chemotherapy is observed. Given the outstanding features of these particles and their ease of tuning, current and future applications in medicine have the potential to display innovative imaging applications and to be used as tools for monitoring and tracking drug delivery in vivo.

Key wordsnanodiamond    scale-up synthesis    bioimaging    hyperpolarization    drug delivery
收稿日期: 2021-05-09      出版日期: 2021-09-24
Corresponding Author(s): Sophie LAURENT   
 引用本文:   
. [J]. Frontiers of Materials Science, 2021, 15(3): 334-351.
Sarah GARIFO, Dimitri STANICKI, Gamze AYATA, Robert N. MULLER, Sophie LAURENT. Nanodiamonds as nanomaterial for biomedical field. Front. Mater. Sci., 2021, 15(3): 334-351.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-021-0567-3
https://academic.hep.com.cn/foms/CN/Y2021/V15/I3/334
Fig.1  
Fig.2  
Fig.3  
System ND surface modification Purposes Outcomes Refs.
ND-ODA/PLLA ODA-functionalized NDs+ PLLA Bone tissue engineering a) Good biocompatibility, increase in hardness, promising for bone scaffolds and smart surgical tools [70]
ND·ANG-1 inside ?β-TCP β-TCP scaffolds were modified with NDs functionalized with ANG-1 Bone implants a) Improvement of vascularization and bone regeneration, safe and easy tool using NDs for biomolecule immobilization and delivery [71]
ND-PEG·anti-HER2 ?peptide Acid-treated NDs coupled with PEG and then conjugated to anti-HER2 peptide CA for PAM b) NDs accumulation in breast tumors, nontoxic particles [72]
ND-Gd3+(DO3A), ?ND-Mn2+(EDTA) Carboxylated ND surface conjugated to conventional amino Gd3+/Mn2+ ion chelate T1-weighted MRI CA (1st generation) b) T1 contrast on MRI at high magnetic field [7374]
ND-PG-Gd3+-DTPA Carboxylated ND surface conjugated to functionalized Gd(III) chelate PG T1-weighted MRI CA (2nd generation) b) Good dispersibility and high relaxometric properties [75]
ND (HPHT, DET, ?natural) Untreated or thermally oxidized ND enhanced MRI via in situ hyperpolarization using OMRI, 1H and 13C MRI b) No long-term toxicity of Gd(III), afford a different perspective to monitor and track functionalized ND in vivo [7679]
FND (HPHT NDs) Intrinsic properties Fluorescence imaging b) High photostability (without photoblinking and photobleaching) [80]
ND-dye Covalently grafted dyes via click chemistry Luminescence labeling b) Fluorescent labeling that may undergo photobleaching [81]
NDs·dBSA-?PEG3000-biotin Biopolymer-based coating Stable fluorescent labeling for bioimaging b) Stabilizing electrostatic and hydrophobic interactions to stabilize the systems [82]
ND-OH·DOX (drug ?delivery) Hydroxylated ND surface+ drug (DOX) adsorbed (1st generation) Increased uptake by breast and liver cancer cells c) Tumor-growth inhibition [83]
ND-PEG·DOX Coating with PEG+ DOX adsorbed (2nd generation) Increased uptake, stabilization c) Prevention of proteins and immune response adhesion, prolonged circulation time, tumor retention and better dispersion under physiological environment [37,64,84]
ND-PAC Covalent linkage of NDs to PAC Drug delivery and cancer therapy c) Decrease of ND-PAC complex cell viability of human lung (A549) [85]
ND-PEG-FA·DOX PEGylated NDs conjugated with folate and DOX Increase in the specificity of drugs c) Decrease of potential side effects, loading high number of DOX [86]
ND-TAT-DOX DOX and cell penetrating peptide (TAT) conjugated to the surface of oxidized NDs Targeted drug release c) To avoid premature release, optimization of intracellular drug delivery by enhancing the translocation across the cell membrane [87]
ND·DOX, ND·EPI, ?ND·BLEO, ND·PAC, ?ND·MTX Absorption of small hydrophobic anticancer drugs Increased uptake c) Improvement of drug retention [7]
ND·PEI800·DNA (gene ?delivery) Acid-treated ND surface coated with PEI+ DNA Gene therapy mediated by NDs c) Higher transfection efficiency, enhancement of plasmid DNA delivery [88]
Tab.1  
System D/nm r1/(s−1·mmol−1·L) η/% Experimental conditions Ref.
B/T t/°C
DET ND-C6-Gd3+(DO3A)·H2O 128 a) 58.8 (5.4 c)) 988 1.5 37 [73]
DET ND-Si-C5-Gd3+(DO3A)·H2O 75 11.1 (6.4 d)) 73 1.4 37 [103]
11.5 (4.8 d)) 139 7 37
DET ND-Gd3+ 7 b) 33.4 (4.8 e)) 596 8 37 [74,104]
DET ND-PG-Gd3+(DTPA)·H2O 51 19.4 (3.7 f)) 424 1.5 uk [75]
16.7 (3.5 f)) 377 3 uk
8.2 (3.4 f)) 141 7 uk
DET ND-Mn2+(EDTA)·H2O 65 22.7 (1.7 g)) 1235 7 uk [105]
Tab.2  
Fig.4  
Fig.5  
Fig.6  
1 T Tsakalakos, I A Ovid’ko, A K Vasudevan, eds. Nanostructures: Synthesis, Functional Properties and Applications. Springer Netherlands, 2003
https://doi.org/10.1007/978-94-007-1019-1
2 K H Bae, H J Chung, T G Park. Nanomaterials for cancer therapy and imaging. Molecules and Cells, 2011, 31(4): 295–302
https://doi.org/10.1007/s10059-011-0051-5 pmid: 21360197
3 J Jeevanandam, A Barhoum, Y S Chan, et al.. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074
https://doi.org/10.3762/bjnano.9.98 pmid: 29719757
4 A Afandi, A Howkins, I W Boyd, et al.. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Scientific Reports, 2018, 8(1): 3270–3280
https://doi.org/10.1038/s41598-018-21670-w pmid: 29459783
5 N Yang, ed. Novel Aspects of Diamond: From Growth to Applications. 2nd ed. Cham, Switzerland: Springer Nature Switzerland AG, 2019
https://doi.org/10.1007/978-3-030-12469-4
6 S Turner, O I Lebedev, O Shenderova, et al.. Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Advanced Functional Materials, 2009, 19(13): 2116–2124
https://doi.org/10.1002/adfm.200801872
7 D Ho, ed. Nanodiamonds: Applications in Biology and Nanoscale Medicine. Springer US, 2010
https://doi.org/10.1007/978-1-4419-0531-4
8 T Devasena. Therapeutic and Diagnostic Nanomaterials. Springer Singapore, 2017
9 C Donnet, A Erdemir, eds. Tribology of Diamond-like Carbon Films: Fundamentals and Applications. Springer US, 2008
https://doi.org/10.1007/978-0-387-49891-1
10 M N R Ashfold, J P Goss, B L Green, et al.. Nitrogen in diamond. Chemical Reviews, 2020, 120(12): 5745–5794
https://doi.org/10.1021/acs.chemrev.9b00518
11 G P Bogatyreva, M A Marinich, E V Ishchenko, et al.. Application of modified nanodiamonds as catalysts of heterogeneous and electrochemical catalyses. Physics of the Solid State, 2004, 46(4): 738–741
https://doi.org/10.1134/1.1711462
12 H Lai, M H Stenzel, P Xiao. Surface engineering and applications of nanodiamonds in cancer treatment and imaging. International Materials Reviews, 2020, 65(4): 189–225
https://doi.org/10.1080/09506608.2019.1622202
13 R Eivazzadeh-Keihan, A Maleki, M de la Guardia, et al.. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: A review. Journal of Advanced Research, 2019, 18: 185–201
https://doi.org/10.1016/j.jare.2019.03.011 pmid: 31032119
14 L Grausova, L Bacakova, A Kromka, et al.. Nanodiamond as promising material for bone tissue engineering. Journal of Nanoscience and Nanotechnology, 2009, 9(6): 3524–3534
https://doi.org/10.1166/jnn.2009.NS26 pmid: 19504878
15 S Chauhan, N Jain, U Nagaich. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on invivo study and patents. Journal of Pharmaceutical Analysis, 2020, 10(1): 1–12
https://doi.org/10.1016/j.jpha.2019.09.003 pmid: 32123595
16 L Balek, M Buchtova, M Kunova Bosakova, et al.. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials, 2018, 176: 106–121
https://doi.org/10.1016/j.biomaterials.2018.05.030 pmid: 29879652
17 Y Y Liu, B M Chang, H C Chang. Nanodiamond-enabled biomedical imaging. Nanomedicine, 2020, 15(16): 1599–1616
https://doi.org/10.2217/nnm-2020-0091 pmid: 32662335
18 D Terada, T Genjo, T F Segawa, et al.. Nanodiamonds for bioapplications — Specific targeting strategies. Biochimica et Biophysica Acta: General Subjects, 2020, 1864(2): 129354
https://doi.org/10.1016/j.bbagen.2019.04.019 pmid: 31071412
19 A M Panich, N A Sergeev, A I Shames, et al.. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. Journal of Physics: Condensed Matter, 2015, 27(7): 072203
https://doi.org/10.1088/0953-8984/27/7/072203
20 D M Gruen, O A Shenderova, A Vul, eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer, 2005, 192: 241–252
21 E Tamburri, S Orlanducci, G Reina, et al.. Nanodiamonds: The ways forward. In: Rossi M,Dini L,Passeri D, et al., eds. Nanoforum 2014, 2015, 1667: 020001
https://doi.org/10.1063/1.4922557
22 A Kh Khachatryan, S G Aloyan, P W May, et al.. Graphite-to-diamond transformation induced by ultrasound cavitation. Diamond and Related Materials, 2008, 17(6): 931–936
https://doi.org/10.1016/j.diamond.2008.01.112
23 J E Butler, A V Sumant. The CVD of nanodiamond materials. Chemical Vapor Deposition, 2008, 14(7–8): 145–160
https://doi.org/10.1002/cvde.200700037
24 J C Arnault, ed. Nanodiamonds: Advanced Material Analysis, Properties and Applications. Elsevier, 2017
25 A S Barnard. Stability of diamond at the nanoscale. In: Shenderova O A, Gruen D M, eds. Ultananocrystalline Diamond. 2nd ed. Elsevier, 2012, 3–52
https://doi.org/10.1016/B978-1-4377-3465-2.00001-3
26 V Y Dolmatov. Detonation nanodiamonds: Synthesis, structure, properties and applications. Uspekhi Khimii, 2007, 76(4): 375–397
https://doi.org/10.1070/RC2007v076n04ABEH003643
27 S Osswald, G Yushin, V Mochalin, et al.. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. Journal of the American Chemical Society, 2006, 128(35): 11635–11642
https://doi.org/10.1021/ja063303n pmid: 16939289
28 V N Mochalin, O Shenderova, D Ho, et al.. The properties and applications of nanodiamonds. Nature Nanotechnology, 2012, 7(1): 11–23
https://doi.org/10.1038/nnano.2011.209 pmid: 22179567
29 A Pentecost, S Gour, V Mochalin, et al.. Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Applied Materials & Interfaces, 2010, 2(11): 3289–3294
https://doi.org/10.1021/am100720n pmid: 21043470
30 A A Peristyy, O N Fedyanina, B Paull, et al.. Diamond based adsorbents and their application in chromatography. Journal of Chromatography A, 2014, 1357: 68–86
https://doi.org/10.1016/j.chroma.2014.06.044 pmid: 24999070
31 I Rehor, J Slegerova, J Kucka, et al.. Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small, 2014, 10(6): 1106–1115
https://doi.org/10.1002/smll.201302336 pmid: 24500945
32 G Reina, L Zhao, A Bianco, et al.. Chemical functionalization of nanodiamonds: Opportunities and challenges ahead. Angewandte Chemie International Edition, 2019, 58(50): 17918–17929
https://doi.org/10.1002/anie.201905997 pmid: 31246341
33 J P Boudou, P A Curmi, F Jelezko, et al.. High yield fabrication of fluorescent nanodiamonds. Nanotechnology, 2009, 20(23): 235602–235613
https://doi.org/10.1088/0957-4484/20/23/235602 pmid: 19451687
34 A M Schrand, H Huang, C Carlson, et al.. Are diamond nanoparticles cytotoxic? The Journal of Physical Chemistry B, 2007, 111(1): 2–7
https://doi.org/10.1021/jp066387v pmid: 17201422
35 B V Spitsyn, M N Gradoboev, T B Galushko, et al.. Purification and functionalization of nanodiamond. In: Gruen D M,Shenderova O A,Vul A, eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer, 2005, 192: 241–252
36 E Y Choi, K Kim, C K Kim, et al.. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion. Scientific Reports, 2016, 6(1): 37010–37020
https://doi.org/10.1038/srep37010 pmid: 27841314
37 X Zhang, C Fu, L Feng, et al.. PEGylation and polyPEGylation of nanodiamond. Polymer, 2012, 53(15): 3178–3184
https://doi.org/10.1016/j.polymer.2012.05.029
38 A Krueger. The structure and reactivity of nanoscale diamond. Journal of Materials Chemistry, 2008, 18(13): 1485–1492
https://doi.org/10.1039/b716673g
39 D H Jariwala, D Patel, S Wairkar. Surface functionalization of nanodiamonds for biomedical applications. Materials Science and Engineering C, 2020, 113: 110996
https://doi.org/10.1016/j.msec.2020.110996 pmid: 32487405
40 O Shenderova, A Koscheev, N Zaripov, et al.. Surface chemistry and properties of ozone-purified detonation nanodiamonds. The Journal of Physical Chemistry C, 2011, 115(20): 9827–9837
https://doi.org/10.1021/jp1102466
41 J Ackermann, A Krueger. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. Nanoscale, 2019, 11(16): 8012–8019
https://doi.org/10.1039/C9NR01716J pmid: 30946413
42 A Kume, V N Mochalin. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond. Diamond and Related Materials, 2020, 103: 107705–107711
https://doi.org/10.1016/j.diamond.2020.107705
43 J Ackermann, A Krueger. Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon, 2020, 163(163): 56–62
https://doi.org/10.1016/j.carbon.2020.02.088
44 S Heyer, W Janssen, S Turner, et al.. Toward deep blue nano hope diamonds: Heavily boron-doped diamond nanoparticles. ACS Nano, 2014, 8(6): 5757–5764
https://doi.org/10.1021/nn500573x pmid: 24738731
45 Y Sun, P Olsén, T Waag, et al.. Disaggregation and anionic activation of nanodiamonds mediated by sodium hydride — A new route to functional aliphatic polyester-based nanodiamond materials. Particle & Particle Systems Characterization, 2015, 32(1): 35–42
https://doi.org/10.1002/ppsc.201400098
46 J Whitlow, S Pacelli, A Paul. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. Journal of Controlled Release, 2017, 261(261): 62–86
https://doi.org/10.1016/j.jconrel.2017.05.033 pmid: 28596105
47 A Krueger, J Stegk, Y Liang, et al.. Biotinylated nanodiamond: Simple and efficient functionalization of detonation diamond. Langmuir, 2008, 24(8): 4200–4204
https://doi.org/10.1021/la703482v pmid: 18312008
48 A Bumb, S K Sarkar, N Billington, et al.. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. Journal of the American Chemical Society, 2013, 135(21): 7815–7818
https://doi.org/10.1021/ja4016815 pmid: 23581827
49 G Jarre, Y Liang, P Betz, et al.. Playing the surface game — Diels–Alder reactions on diamond nanoparticles. Chemical Communications, 2011, 47(1): 544–546
https://doi.org/10.1039/C0CC02931A pmid: 21103574
50 D Lang, A Krueger. The Prato reaction on nanodiamond: Surface functionalization by formation of pyrrolidine rings. Diamond and Related Materials, 2011, 20(2): 101–104
https://doi.org/10.1016/j.diamond.2010.09.001
51 D Lang, A Krueger. Functionalizing nanodiamond particles with N-heterocyclic iminium bromides and dicyano methanides. Diamond and Related Materials, 2017, 79: 102–107
https://doi.org/10.1016/j.diamond.2017.09.003
52 H A Girard, J C Arnault, S Perruchas, et al.. Hydrogenation of nanodiamonds using MPCVD: A new route toward organic functionalization. Diamond and Related Materials, 2010, 19(7–9): 1117–1123
https://doi.org/10.1016/j.diamond.2010.03.019
53 H A Girard, A El-Kharbachi, S Garcia-Argote, et al.. Tritium labeling of detonation nanodiamonds. Chemical Communications, 2014, 50(22): 2916–2918
https://doi.org/10.1039/C3CC49653H pmid: 24492594
54 E Nehlig, S Garcia-Argote, S Feuillastre, et al.. Using hydrogen isotope incorporation as a tool to unravel the surfaces of hydrogen-treated nanodiamonds. Nanoscale, 2019, 11(16): 8027–8036
https://doi.org/10.1039/C9NR01555H pmid: 30964938
55 S Claveau, É Nehlig, S Garcia-Argote, et al.. Delivery of siRNA to Ewing sarcoma tumor xenografted on mice, using hydrogenated detonation nanodiamonds: Treatment efficacy and tissue distribution. Nanomaterials, 2020, 10(3): 553
https://doi.org/10.3390/nano10030553 pmid: 32204428
56 Y Liu, V N Khabashesku, N J Halas. Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. Journal of the American Chemical Society, 2005, 127(11): 3712–3713
https://doi.org/10.1021/ja042389m pmid: 15771502
57 G V Lisichkin, I I Kulakova, Y A Gerasimov, et al.. Halogenation of detonation-synthesised nanodiamond surfaces. Mendeleev Communications, 2009, 19(6): 309–310
https://doi.org/10.1016/j.mencom.2009.11.004
58 C Bradac, S Osswald. Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. Carbon, 2018, 132: 616–622
https://doi.org/10.1016/j.carbon.2018.02.102
59 X Xu, Z Yu. Influence of thermal oxidation on as-synthesized detonation nanodiamond. Particuology, 2012, 10(3): 339–344
https://doi.org/10.1016/j.partic.2011.03.015
60 O Shenderova, I Petrov, J Walsh, et al.. Modification of detonation nanodiamonds by heat treatment in air. Diamond and Related Materials, 2006, 15(11–12): 1799–1803
https://doi.org/10.1016/j.diamond.2006.08.032
61 I A Apolonskaya, A V Tyurnina, P G Kopylov, et al.. Thermal oxidation of detonation nanodiamond. Moscow University Physics Bulletin, 2009, 64(4): 433–436
https://doi.org/10.3103/S0027134909040171
62 T Gaebel, C Bradac, J Chen, et al.. Size-reduction of nanodiamonds via air oxidation. Diamond and Related Materials, 2012, 21: 28–32
https://doi.org/10.1016/j.diamond.2011.09.002
63 S Sotoma, F J Hsieh, Y W Chen, et al.. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. Chemical Communications, 2018, 54(8): 1000–1003
https://doi.org/10.1039/C7CC08496J pmid: 29323372
64 L Li, L Tian, W Zhao, et al.. pH-sensitive nanomedicine based on PEGylated nanodiamond for enhanced tumor therapy. RSC Advances, 2016, 6(43): 36407–36417
https://doi.org/10.1039/C6RA04141H
65 D Terada, S Sotoma, Y Harada, et al.. One-pot synthesis of highly dispersible fluorescent nanodiamonds for bioconjugation. Bioconjugate Chemistry, 2018, 29(8): 2786–2792
https://doi.org/10.1021/acs.bioconjchem.8b00412 pmid: 29975511
66 Y Z Wu, T Weil. Nanodiamonds for biological applications. Physical Sciences Reviews, 2017, 2(6): UNSP 20160104
https://doi.org/10.1515/psr-2016-0104
67 N Prabhakar, J M Rosenholm. Nanodiamonds for advanced optical bioimaging and beyond. Current Opinion in Colloid & Interface Science, 2019, 39: 220–231
https://doi.org/10.1016/j.cocis.2019.02.014
68 N Dworak, M Wnuk, J Zebrowski, et al.. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon, 2014, 68: 763–776
https://doi.org/10.1016/j.carbon.2013.11.067
69 H Moche, V Paget, D Chevalier, et al.. Carboxylated nanodiamonds can be used as negative reference in in vitro nanogeno-toxicity studies. Journal of Applied Toxicology, 2017, 37(8): 954–961
https://doi.org/10.1002/jat.3443 pmid: 28165139
70 Q Zhang, V N Mochalin, I Neitzel, et al.. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, 2011, 32(1): 87–94
https://doi.org/10.1016/j.biomaterials.2010.08.090 pmid: 20869765
71 X Wu, M Bruschi, T Waag, et al.. Functionalization of bone implants with nanodiamond particles and angiopoietin-1 to improve vascularization and bone regeneration. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2017, 5(32): 6629–6636
https://doi.org/10.1039/C7TB00723J pmid: 32264425
72 T Zhang, H Cui, C Y Fang, et al.. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine, 2015, 10(4): 573–587
https://doi.org/10.2217/nnm.14.141 pmid: 25723091
73 L M Manus, D J Mastarone, E A Waters, et al.. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Letters, 2010, 10(2): 484–489
https://doi.org/10.1021/nl903264h pmid: 20038088
74 A M Panich, M Salti, S D Goren, et al.. Gd(III)-grafted detonation nanodiamonds for MRI contrast enhancement. The Journal of Physical Chemistry C, 2019, 123(4): 2627–2631
https://doi.org/10.1021/acs.jpcc.8b11655
75 L Zhao, A Shiino, H Qin, et al.. Synthesis, characterization, and magnetic resonance evaluation of polyglycerol-functionalized detonation nanodiamond conjugated with gadolinium(III) complex. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 1076–1082
https://doi.org/10.1166/jnn.2015.9738 pmid: 26353615
76 P Dutta, G V Martinez, R J Gillies. Nanodiamond as a new hyperpolarizing agent and its 13C MRS. The Journal of Physical Chemistry Letters, 2014, 5(3): 597–600
https://doi.org/10.1021/jz402659t pmid: 26276615
77 D E J Waddington, M Sarracanie, N Salameh, et al.. An Overhauser-enhanced-MRI platform for dynamic free radical imaging in vivo. NMR in Biomedicine, 2018, 31(5): e3896
https://doi.org/10.1002/nbm.3896 pmid: 29493032
78 D E J Waddington, M Sarracanie, H Zhang, et al.. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nature Communications, 2017, 8(1): 15118–15127
https://doi.org/10.1038/ncomms15118 pmid: 28443626
79 D E J Waddington, T Boele, E Rej, et al.. Phase-encoded hyperpolarized nanodiamond for magnetic resonance imaging. Scientific Reports, 2019, 9(1): 5950–5970
https://doi.org/10.1038/s41598-019-42373-w pmid: 30976049
80 J M Say, C van Vreden, D J Reilly, et al.. Luminescent nanodiamonds for biomedical applications. Biophysical Reviews, 2011, 3(4): 171–184
https://doi.org/10.1007/s12551-011-0056-5 pmid: 28510046
81 T Meinhardt, D Lang, H Dill, et al.. Pushing the functionality of diamond nanoparticles to new horizons: Orthogonally functionalized nanodiamond using click chemistry. Advanced Functional Materials, 2011, 21(3): 494–500
https://doi.org/10.1002/adfm.201001219
82 T Zhang, A Neumann, J Lindlau, et al.. DNA-based self-assembly of fluorescent nanodiamonds. Journal of the American Chemical Society, 2015, 137(31): 9776–9779
https://doi.org/10.1021/jacs.5b04857 pmid: 26196373
83 E K Chow, X-Q Zhang, M Chen, et al.. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Science Translational Medicine, 2011, 3(73): 73ra21
https://doi.org/10.1126/scitranslmed.3001713
84 D Wang, Y Tong, Y Li, et al.. PEGylated nanodiamond for chemotherapeutic drug delivery. Diamond and Related Materials, 2013, 36: 26–34
https://doi.org/10.1016/j.diamond.2013.04.002
85 K K Liu, W W Zheng, C C Wang, et al.. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 2010, 21(31): 315106–315119
https://doi.org/10.1088/0957-4484/21/31/315106 pmid: 20634575
86 Y Dong, R Cao, Y Li, et al.. Folate-conjugated nanodiamond for tumor-targeted drug delivery. RSC Advances, 2015, 5(101): 82711–82716
https://doi.org/10.1039/C5RA12383F
87 X Li, J Shao, Y Qin, et al.. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. Journal of Materials Chemis-try, 2011, 21(22): 7966–7974
https://doi.org/10.1039/c1jm10653h
88 X Q Zhang, M Chen, R Lam, et al.. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano, 2009, 3(9): 2609–2616
https://doi.org/10.1021/nn900865g pmid: 19719152
89 K Purtov, A Petunin, E Inzhevatkin, et al.. Biodistribution of different sized nanodiamonds in mice. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 1070–1075
https://doi.org/10.1166/jnn.2015.9746 pmid: 26353614
90 E Inzhevatkin, A Baron, N Maksimov, et al.. Biodistribution of nanodiamonds in the body of mice using EPR spectrometry. IET Science, Measurement & Technology, 2019, 13(7): 984–988
https://doi.org/10.1049/iet-smt.2018.5594
91 S Suliman, K Mustafa, A Krueger, et al.. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes. Biomaterials, 2016, 95: 11–21
https://doi.org/10.1016/j.biomaterials.2016.04.002 pmid: 27108402
92 M Okamoto, B John. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 2013, 38(10–11): 1487–1503
https://doi.org/10.1016/j.progpolymsci.2013.06.001
93 Y R Chang, H Y Lee, K Chen, et al.. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotechnology, 2008, 3(5): 284–288
https://doi.org/10.1038/nnano.2008.99 pmid: 18654525
94 S Parveen, R Misra, S K Sahoo. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8(2): 147–166
https://doi.org/10.1016/j.nano.2011.05.016 pmid: 21703993
95 X Dang, N M Bardhan, J Qi, et al.. Deep-tissue optical imaging of near cellular-sized features. Scientific Reports, 2019, 9(1): 3873–3885
https://doi.org/10.1038/s41598-019-39502-w pmid: 30846704
96 L J Su, M S Wu, Y Y Hui, et al.. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Scientific Reports, 2017, 7(1): 45607–45618
https://doi.org/10.1038/srep45607 pmid: 28358111
97 I Steinberg, D M Huland, O Vermesh, et al.. Photoacoustic clinical imaging. Photoacoustics, 2019, 14: 77–98
https://doi.org/10.1016/j.pacs.2019.05.001 pmid: 31293884
98 S Laurent, C Henoumont, D Stanicki, et al.. MRI Contrast Agents: From Molecules to Particles. Springer Singapore, 2017
https://doi.org/10.1007/978-981-10-2529-7
99 E Lipani, S Laurent, M Surin, et al.. High-relaxivity and luminescent silica nanoparticles as multimodal agents for molecular imaging. Langmuir, 2013, 29(10): 3419–3427
https://doi.org/10.1021/la304689d pmid: 23383648
100 C Guo, J Hu, A Bains, et al.. The potential of peptide dendron functionalized and gadolinium loaded mesoporous silica nanoparticles as magnetic resonance imaging contrast agents. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(13): 2322–2331
https://doi.org/10.1039/C5TB02709H pmid: 32263227
101 F Carniato, L Tei, M Botta. Gd-based mesoporous silica nanoparticles as MRI probes: Gd-based mesoporous silica nanoparticles as MRI probes. European Journal of Inorganic Chemistry, 2018, 2018(46): 4936–4954
https://doi.org/10.1002/ejic.201801039
102 J Pellico, C M Ellis, J J Davis. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media & Molecular Imaging, 2019, UNSP 1845637
https://doi.org/10.1155/2019/1845637 pmid: 31191182
103 N Rammohan, K W MacRenaris, L K Moore, et al.. Nanodiamond-gadolinium(III) aggregates for tracking cancer growth in vivo at high field. Nano Letters, 2016, 16(12): 7551–7564
https://doi.org/10.1021/acs.nanolett.6b03378 pmid: 27960515
104 V Yu Osipov, A E Aleksenskiy, K Takai, et al.. Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions. Physics of the Solid State, 2015, 57(11): 2314–2319
https://doi.org/10.1134/S1063783415110268
105 W Hou, T B Toh, L N Abdullah, et al.. Nanodiamond-manganese dual mode MRI contrast agents for enhanced liver tumor detection. Nanomedicine: Nanotechnology, Biology, and Medi-cine, 2017, 13(3): 783–793
https://doi.org/10.1016/j.nano.2016.12.013 pmid: 28003120
106 P Caravan, C T Farrar, L Frullano, et al.. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media & Molecular Imaging, 2009, 4(2): 89–100
https://doi.org/10.1002/cmmi.267 pmid: 19177472
107 M K Dhas, H Utsumi, A Jawahar, et al.. Dynamic nuclear polarization properties of nitroxyl radical in high viscous liquid using Overhauser-enhanced magnetic resonance imaging (OMRI). Journal of Magnetic Resonance, 2015, 257: 32–38
https://doi.org/10.1016/j.jmr.2015.05.009 pmid: 26047309
108 N Jugniot, I Duttagupta, A Rivot, et al.. An elastase activity reporter for electronic paramagnetic resonance (EPR) and Overhauser-enhanced magnetic resonance imaging (OMRI) as a line-shifting nitroxide. Free Radical Biology & Medicine, 2018, 126: 101–112
https://doi.org/10.1016/j.freeradbiomed.2018.08.006 pmid: 30092349
109 A Ajoy, K Liu, R Nazaryan, et al.. Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond. Science Advances, 2018, 4(5): eaar5492
https://doi.org/10.1126/sciadv.aar5492 pmid: 29795783
110 G Kwiatkowski, F Jähnig, J Steinhauser, et al.. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications — Considerations on particle size, functionalization and polarization loss. Journal of Magnetic Resonance, 2018, 286: 42–51
https://doi.org/10.1016/j.jmr.2017.11.007 pmid: 29183003
111 J H Ardenkjaer-Larsen, B Fridlund, A Gram, et al.. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(18): 10158–10163
https://doi.org/10.1073/pnas.1733835100 pmid: 12930897
112 T Boele, D E J Waddington, T Gaebel, et al.. Tailored nanodiamonds for hyperpolarized 13C MRI. Physical Review B, 2020, 101(15): 155416
https://doi.org/10.1103/PhysRevB.101.155416
113 Q Chen, I Schwarz, F Jelezko, et al.. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures. Physical Review B, 2016, 93(6): 060408
https://doi.org/10.1103/PhysRevB.93.060408
114 E Rej, T Gaebel, T Boele, et al.. Hyperpolarized nanodiamond with long spin-relaxation times. Nature Communications, 2015, 6(1): 8459–8466
https://doi.org/10.1038/ncomms9459 pmid: 26450570
115 T J Merkel, J M DeSimone. Dodging drug-resistant cancer with diamonds. Science Translational Medicine, 2011, 3(73): 73ps8
https://doi.org/10.1126/scitranslmed.3002137 pmid: 21389261
116 Y Wu, A Ermakova, W Liu, et al.. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Advanced Functional Materials, 2015, 25(42): 6576–6585
https://doi.org/10.1002/adfm.201502704
117 A Gismondi, G Reina, S Orlanducci, et al.. Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 2015, 38: 22–35
https://doi.org/10.1016/j.biomaterials.2014.10.057 pmid: 25457980
118 X Zhang, S Wang, C Fu, et al.. PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3(10): 2716–2719
https://doi.org/10.1039/c2py20457f
119 G L Zwicke, G A Mansoori, C J Jeffery. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews, 2012, 3: 18496
https://doi.org/10.3402/nano.v3i0.18496 pmid: 23240070
120 C Kranz, ed. Carbon-Based Nanosensor Technology. 1st ed. Cham, Switzerland: Springer International Publishing, 2019
https://doi.org/10.1007/978-3-030-11864-8
121 J Neburkova, J Vavra, P Cigler. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Current Opinion in Solid State and Materials Science, 2017, 21(1): 43–53
https://doi.org/10.1016/j.cossms.2016.05.008
122 A H Smith, E M Robinson, X Q Zhang, et al.. Triggered release of therapeutic antibodies from nanodiamond complexes. Nano-scale, 2011, 3(7): 2844–2848
https://doi.org/10.1039/c1nr10278h pmid: 21617824
123 X L Kong, L C L Huang, C M Hsu, et al.. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Analytical Chemistry, 2005, 77(1): 259–265
https://doi.org/10.1021/ac048971a pmid: 15623304
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed