Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2022, Vol. 16 Issue (1): 220585   https://doi.org/10.1007/s11706-022-0585-9
  本期目录
Facile synthesis of Ni-doped SnO2 nanorods and their high gas sensitivity to isopropanol
Yanqiu YU, Shantang LIU()
Key Laboratory for Green Chemical Process (Ministry of Education), School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
 全文: PDF(1918 KB)   HTML
Abstract

In this work, pure SnO2 and Ni-doped SnO2 nanorods were synthesized through a one-step template-free hydrothermal method and then used to detect isopropanol. Sensors fabricated with the Ni-doped SnO2 nanocomposites showed the best gas sensing performance when the Ni doping amount was 1.5 mol.%. The response reached 250 at 225 °C, which was approximately 8.3 times higher than that of the pure SnO2 nanorods. The limit of detection for isopropanol was as low as 10 ppb at the optimum working temperature. In addition, it also displayed good selectivity and excellent reproducibility. It is believed that the enhanced isopropanol sensing behavior benefit from the increased oxygen defects and larger specific surface area by Ni doping.

Key wordstemplate-free hydrothermal method    isopropanol    gas sensor    Ni doping    low detection limit
收稿日期: 2021-11-18      出版日期: 2022-01-27
Corresponding Author(s): Shantang LIU   
作者简介:

Peng Lu, Renxing Wang, and Yue Xing contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Materials Science, 2022, 16(1): 220585.
Yanqiu YU, Shantang LIU. Facile synthesis of Ni-doped SnO2 nanorods and their high gas sensitivity to isopropanol. Front. Mater. Sci., 2022, 16(1): 220585.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-022-0585-9
https://academic.hep.com.cn/foms/CN/Y2022/V16/I1/220585
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Material Concentration/ppm Temperature/°C Response Detection limit/ppm Ref.
Pt-SnO2 nanosheets 100 220 190.50 5 [5]
SnO2/ZnO core/shell composites 500 300 103.3 1 [46]
SnO2 nanorings 100 250 7.27 1 [47]
CuO–SnO2 nanorods 100 280 50.4 20 [48]
g-C3N4/SnO2 composites 100 200 61.63 1 [49]
SnO2 nanorods 200 325 19.29 20 [50]
Sm-SnO2 nanoarrays 100 251 43 1 [51]
Double-shelled SnO2 tubes 100 180 14.5 5 [52]
Pt-SnO2 nanoflowers 100 250 171 1 [53]
Ni-SnO2 nanorods 100 225 250 0.01 this work
Tab.1  
Fig.11  
1 X Cai, D Hu, S Deng, et al.. Isopropanol sensing properties of coral-like ZnO–CdO composites by flash preparation via self-sustained decomposition of metalorganic complexes. Sensors and Actuators B: Chemical, 2014, 198: 402–410
https://doi.org/10.1016/j.snb.2014.03.093
2 D Hu, B Han, S Deng, et al.. Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. The Journal of Physical Chemistry C, 2014, 118(18): 9832–9840
https://doi.org/10.1021/jp501550w
3 P J Chien, T Suzuki, M Tsujii, et al.. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker. Biosensors & Bioelectronics, 2017, 91: 341–346
https://doi.org/10.1016/j.bios.2016.12.050 pmid: 28043076
4 L Jiang, C Wang, J Wang, et al.. Ultrathin BiVO4 nanosheets sensing electrode for isopropanol sensor based on pyrochlore-Gd2Zr2O7 solid state electrolyte. Sensors and Actuators B: Chemical, 2020, 321: 128478
https://doi.org/10.1016/j.snb.2020.128478
5 C Dong, X Liu, X Xiao, et al.. Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(47): 20089–20095
https://doi.org/10.1039/C4TA04251D
6 S Acharyya, B Jana, S Nag, et al.. Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: a proof of concept. Sensors and Actuators B: Chemical, 2020, 321: 128484
https://doi.org/10.1016/j.snb.2020.128484
7 J H Kim, J Y Kim, J H Lee, et al.. Indium-implantation-induced enhancement of gas sensing behaviors of SnO2 nanowires by the formation of homo-core–shell structure. Sensors and Actuators B: Chemical, 2020, 321: 128475
https://doi.org/10.1016/j.snb.2020.128475
8 A A Haidry, L Xie, Z Wang, et al.. Hydrogen sensing and adsorption kinetics on ordered mesoporous anatase TiO2 surface. Applied Surface Science, 2020, 500: 144219
https://doi.org/10.1016/j.apsusc.2019.144219
9 Y Kang, K Kim, B Cho, et al.. Highly sensitive detection of benzene, toluene, and xylene based on CoPP-functionalized TiO2 nanoparticles with low power consumption. ACS Sensors, 2020, 5(3): 754–763
https://doi.org/10.1021/acssensors.9b02310 pmid: 32048833
10 L Zhu, Y Li, W Zeng. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Applied Surface Science, 2018, 427: 281–287
https://doi.org/10.1016/j.apsusc.2017.08.229
11 Y Chen, Y Zhang, H Zhang, et al.. Design and evaluation of Cu-modified ZnO microspheres as a high performance formaldehyde sensor based on density functional theory. Applied Surface Science, 2020, 532: 147446
https://doi.org/10.1016/j.apsusc.2020.147446
12 Z Tao, Y Li, B Zhang, et al.. Bi-doped urchin-like In2O3 hollow spheres: synthesis and improved gas sensing and visible-light photocatalytic properties. Sensors and Actuators B: Chemical, 2020, 321: 128623
https://doi.org/10.1016/j.snb.2020.128623
13 L Jun, Q Chen, W Fu, et al.. Electrospun Yb-doped In2O3 nanofiber field-effect transistors for highly sensitive ethanol sensors. ACS Applied Materials & Interfaces, 2020, 12(34): 38425–38434
https://doi.org/10.1021/acsami.0c12259 pmid: 32786210
14 O Sisman, D Zappa, E Bolli, et al.. Influence of iron and nitrogen ion beam exposure on the gas sensing properties of CuO nanowires. Sensors and Actuators B: Chemical, 2020, 321: 128579
https://doi.org/10.1016/j.snb.2020.128579
15 O Mnethu, S S Nkosi, I Kortidis, et al.. Ultra-sensitive and selective p-xylene gas sensor at low operating temperature utilizing Zn doped CuO nanoplatelets: insignificant vestiges of oxygen vacancies. Journal of Colloid and Interface Science, 2020, 576: 364–375
https://doi.org/10.1016/j.jcis.2020.05.030 pmid: 32460099
16 Z Cao, Z Jiang, L Cao, et al.. Lattice expansion and oxygen vacancy of α-Fe2O3 during gas sensing. Talanta, 2021, 221: 121616
https://doi.org/10.1016/j.talanta.2020.121616 pmid: 33076146
17 C Zhai, Y Liu, L Du, et al.. Novel malonic acid assisted synthesized porous Fe2O3 microspheres for ultra-fast response and recovery toward triethylamine. New Journal of Chemistry, 2020, 44(15): 5929–5936
https://doi.org/10.1039/D0NJ00070A
18 Y Zhang, C Wang, L Zhao, et al.. Preparation of Ce-doped SnO2 cuboids with enhanced 2-butanone sensing performance. Sensors and Actuators B: Chemical, 2021, 341: 130039
https://doi.org/10.1016/j.snb.2021.130039
19 C H Kwak, H S Woo, J H Lee. Selective trimethylamine sensors using Cr2O3-decorated SnO2 nanowires. Sensors and Actuators B: Chemical, 2014, 204: 231–238
https://doi.org/10.1016/j.snb.2014.07.084
20 H Wang, M Chen, Q Rong, et al.. Ultrasensitive xylene gas sensor based on flower-like SnO2/Co3O4 nanorods composites prepared by facile two-step synthesis method. Nanotechnology, 2020, 31(25): 255501
https://doi.org/10.1088/1361-6528/ab70d1 pmid: 31995528
21 H Shan, C Liu, L Liu, et al.. Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes. ACS Applied Materials & Interfaces, 2013, 5(13): 6376–6380
https://doi.org/10.1021/am4015082 pmid: 23755847
22 T Yang, K Gu, M Zhu, et al.. ZnO–SnO2 heterojunction nanobelts: synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties. Sensors and Actuators B: Chemical, 2019, 279: 410–417
https://doi.org/10.1016/j.snb.2018.10.031
23 Y Liu, X Li, Y Wang, et al.. Hydrothermal synthesis of Au@SnO2 hierarchical hollow microspheres for ethanol detection. Sensors and Actuators B: Chemical, 2020, 319: 128299
https://doi.org/10.1016/j.snb.2020.128299
24 S W Choi, A Katoch, G J Sun, et al.. NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2013, 1(16): 2834–2841
https://doi.org/10.1039/c3tc00602f
25 D Xue, P Wang, Z Zhang, et al.. Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: a combined experimental and first-principle study. Sensors and Actuators B: Chemical, 2019, 296: 126710
https://doi.org/10.1016/j.snb.2019.126710
26 Z Cai, S Park. Synthesis of Pd nanoparticle-decorated SnO2 nanowires and determination of the optimum quantity of Pd nanoparticles for highly sensitive and selective hydrogen gas sensor. Sensors and Actuators B: Chemical, 2020, 322: 128651
https://doi.org/10.1016/j.snb.2020.128651
27 Z Li, J Yi. Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method. Sensors and Actuators B: Chemical, 2017, 243: 96–103
https://doi.org/10.1016/j.snb.2016.11.136
28 S Das, K G Girija, A K Debnath, et al.. Enhanced NO2 and SO2 sensor response under ambient conditions by polyol synthesized Ni doped SnO2 nanoparticles. Journal of Alloys and Compounds, 2021, 854: 157276
https://doi.org/10.1016/j.jallcom.2020.157276
29 L Xiao, S Shu, S Liu. A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance. Sensors and Actuators B: Chemical, 2015, 221: 20–126
https://doi.org/10.1016/j.snb.2015.06.099
30 S Shu, M Wang, Y Wei, et al.. Synthesis of surface layered hierarchical octahedral-like structured Zn2SnO4/SnO2 with excellent sensing properties toward HCHO. Sensors and Actuators B: Chemical, 2017, 243: 1171–1180
https://doi.org/10.1016/j.snb.2016.12.110
31 W Bi, W Wang, S Liu. Synthesis of Rh-SnO2 nanosheets and ultra-high triethylamine sensing performance. Journal of Alloys and Compounds, 2020, 817: 152730
https://doi.org/10.1016/j.jallcom.2019.152730
32 L Xiao, S Xu, G Yu, et al.. Efficient hierarchical mixed Pd/SnO2 porous architecture deposited microheater for low power ethanol gas sensor. Sensors and Actuators B: Chemical, 2018, 255: 2002–2010
https://doi.org/10.1016/j.snb.2017.08.216
33 R H R Castro, P Hidalgo, R Muccillo, et al.. Microstructure and structure of NiO–SnO2 and Fe2O3–SnO2 systems. Applied Surface Science, 2003, 214(1–4): 172–177
https://doi.org/10.1016/S0169-4332(03)00274-5
34 Z Lin, N Li, Z Chen, et al.. The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sensors and Actuators B: Chemical, 2017, 239: 501–510
https://doi.org/10.1016/j.snb.2016.08.053
35 J Hu, T Wang, Y Wang, et al.. Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sensors and Actuators B: Chemical, 2018, 263: 120–128
https://doi.org/10.1016/j.snb.2018.02.035
36 D Meng, D Y Liu, G S Wang, et al.. Low-temperature formaldehyde gas sensors based on NiO–SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sensors and Actuators B: Chemical, 2018, 273: 418–428
https://doi.org/10.1016/j.snb.2018.06.030
37 X Liu, J Zhang, X Guo, et al.. Enhanced sensor response of Ni-doped SnO2 hollow spheres. Sensors and Actuators B: Chemical, 2011, 152(2): 162–167
https://doi.org/10.1016/j.snb.2010.12.001
38 Y Wang, G Xiong, X Liu, et al.. Structure and reducibility of NiO–MoO3/γ-Al2O3 catalysts: effects of loading and molar ratio. The Journal of Physical Chemistry C, 2008, 112(44): 17265–17271
https://doi.org/10.1021/jp800182j
39 Z Wang, Z Li, J Sun, et al.. Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. The Journal of Physical Chemistry C, 2010, 114(13): 6100–6105
https://doi.org/10.1021/jp9100202
40 B Zhao, X Guo, W Zhao, et al.. Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Applied Materials & Interfaces, 2016, 8(42): 28917–28925
https://doi.org/10.1021/acsami.6b10886 pmid: 27700044
41 S Xu, J Gao, L Wang, et al.. Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale, 2015, 7(35): 14643–14651
https://doi.org/10.1039/C5NR03796D pmid: 26265494
42 J Lu, Y Xie, F Luo, et al.. Heterostructures of mesoporous hollow Zn2SnO4/SnO2 microboxes for high-performance acetone sensors. Journal of Alloys and Compounds, 2020, 844: 155788
https://doi.org/10.1016/j.jallcom.2020.155788
43 Z Zhu, L Zheng, S Zheng, et al.. Multichannel pathway-enriched mesoporous NiO nanocuboids for the highly sensitive and selective detection of 3-hydroxy-2-butanone biomarkers. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(17): 10456–10463
https://doi.org/10.1039/C9TA01013K
44 J Wang, C Hu, Y Xia, et al.. Mesoporous ZnO nanosheets with rich surface oxygen vacancies for UV-activated methane gas sensing at room temperature. Sensors and Actuators B: Chemical, 2021, 333: 129547
https://doi.org/10.1016/j.snb.2021.129547
45 S Qin, P Tang, Y Feng, et al.. Novel ultrathin mesoporous ZnO–SnO2 n–n heterojunction nanosheets with high sensitivity to ethanol. Sensors and Actuators B: Chemical, 2020, 309: 127801
https://doi.org/10.1016/j.snb.2020.127801
46 M Poloju, N Jayababu, E Manikandan, et al.. Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(10): 2662–2668
https://doi.org/10.1039/C6TC05095F
47 S H Li, Z Chu, F F Meng, et al.. Highly sensitive gas sensor based on SnO2 nanorings for detection of isopropanol. Journal of Alloys and Compounds, 2016, 688: 712–717
https://doi.org/10.1016/j.jallcom.2016.07.248
48 B Zhang, W Fu, X Meng, et al.. Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Applied Surface Science, 2018, 456: 586–593
https://doi.org/10.1016/j.apsusc.2018.06.150
49 R Zhao, Z Wang, T Zou, et al.. Synthesis and enhanced sensing performance of g-C3N4/SnO2 composites toward isopropanol. Chemistry Letters, 2018, 47(7): 881–882
https://doi.org/10.1246/cl.180296
50 D Hu, B Han, R Han, et al.. SnO2 nanorods based sensing material as an isopropanol vapor sensor. New Journal of Chemistry, 2014, 38(6): 2443–2450
https://doi.org/10.1039/c3nj01482g
51 Y Zhao, Y Li, W Wan, et al.. Surface defect and gas-sensing performance of the well-aligned Sm-doped SnO2 nanoarrays. Materials Letters, 2018, 218: 22–26
https://doi.org/10.1016/j.matlet.2018.01.136
52 H Sun, C Zhang, Y Peng, et al.. Synthesis of double-shelled SnO2 hollow cubes for superior isopropanol sensing performance. New Journal of Chemistry, 2019, 43(12): 4721–4726
https://doi.org/10.1039/C9NJ00292H
53 W Bi, W Xiao, S Liu. Synthesis of Pt-doped SnO2 flower-like hierarchical structure and its gas sensing properties to isopropanol. Journal of Materials Science, 2021, 56(10): 6095–6109
https://doi.org/10.1007/s10853-020-05655-7
54 Y Wang, Z Zhao, Y Sun, et al.. Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection. Sensors and Actuators B: Chemical, 2017, 240: 664–673
https://doi.org/10.1016/j.snb.2016.09.024
55 S Singkammo, A Wisitsoraat, C Sriprachuabwong, et al.. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing. ACS Applied Materials & Interfaces, 2015, 7(5): 3077–3092
https://doi.org/10.1021/acsami.5b00161 pmid: 25602118
56 P Sun, X Zhou, C Wang, et al.. One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sensors and Actuators B: Chemical, 2014, 190: 32–39
https://doi.org/10.1016/j.snb.2013.08.045
57 Q Zhou, W Chen, L Xu, et al.. Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceramics International, 2018, 44(4): 4392–4399
https://doi.org/10.1016/j.ceramint.2017.12.038
58 Z Song, W Chen, H Zhang, et al.. Highly sensitive and selective acetylene sensors based on p–n heterojunction of NiO nanoparticles on flower-like ZnO structures. Ceramics International, 2019, 45(16): 19635–19643
https://doi.org/10.1016/j.ceramint.2019.06.212
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed