Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2022, Vol. 16 Issue (2): 220598   https://doi.org/10.1007/s11706-022-0598-4
  本期目录
Anti-corrosive, weatherproof and self-healing polyurethane developed from hydrogenated hydroxyl-terminated polybutadiene toward surface-protective applications
Yuanyuan LIU1, Xin DU1, Hui WANG1, Yu YUAN1, Liuhe WEI1,2, Xingjiang LIU1,2, Ailing SUN1,2(), Yuhan LI1,2()
1. College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
2. Zhengzhou Key Laboratory of Elastic Sealing Materials, Zhengzhou 450001, China
 全文: PDF(5269 KB)   HTML
Abstract

Self-healing polyurethane (PU) faces aging deterioration due to active dynamic bonds, which remain a challenging predicament for practical use. In this work, a novel strategy is developed to address this predicament by leveraging the hydrophobicity and gas barrier of hydrogenated hydroxyl-terminated polybutadiene (HHPB). The dynamic oxime-carbamate bonds derived from 2, 4-pentanedione dioxime (PDO) enable the elastomer to exhibit surface self-repairability upon applied mild heat and achieve ~99.5% mechanical self-healing efficiency. The mechanical properties remained nearly intact after 30-d exposure to thermal oxidation, xenon lamp, acids, bases, and salts. Gas permeability, positron annihilation lifetime spectroscopy (PALS), and contact angle measurements reveal the pivotal role of gas barrier, free volume, and hydrophobicity in blocking undesirable molecules and ions which effectively protects the elastomer from deterioration. HHPB-PU also exhibits excellent adhesion to steel substrate. The shear strength achieves (3.02 ± 0.42) MPa after heating at 80 °C for 4 h, and (3.06 ± 0.2) MPa after heating at 130 °C for 0.5 h. Regarding its outstanding anti-corrosive and weatherproof performances, this self-healable elastomer is a promising candidate in surface-protective applications.

Key wordshydrogenated hydroxyl-terminated polybutadiene    hydrophobicity    anti-aging performance    self-healing    surface protection
收稿日期: 2022-01-10      出版日期: 2022-05-09
Corresponding Author(s): Ailing SUN,Yuhan LI   
作者简介:

Peng Lu, Renxing Wang, and Yue Xing contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Materials Science, 2022, 16(2): 220598.
Yuanyuan LIU, Xin DU, Hui WANG, Yu YUAN, Liuhe WEI, Xingjiang LIU, Ailing SUN, Yuhan LI. Anti-corrosive, weatherproof and self-healing polyurethane developed from hydrogenated hydroxyl-terminated polybutadiene toward surface-protective applications. Front. Mater. Sci., 2022, 16(2): 220598.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-022-0598-4
https://academic.hep.com.cn/foms/CN/Y2022/V16/I2/220598
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Sample HS/wt.% P(O2)/(10?10 cm3·cm·cm?2·s?1·cmHg?1) τ3/ps I3/% R/? Fr/%
HHPB-PU 16.5 5.809 2485 16.9 3.258 2.447
PTMEG-PU 37.3 5.451 2450 15.1 3.231 2.132
PPG-PU 37.3 4.271 2605 15.9 3.349 2.500
Tab.1  
Fig.7  
1 R H Aguirresarobe , S Nevejans , B Reck . et al.. Healable and self-healing polyurethanes using dynamic chemistry. Progress in Polymer Science, 2021, 114 : 101362
https://doi.org/10.1016/j.progpolymsci.2021.101362
2 P Chakma , D Konkolewicz . Dynamic covalent bonds in polymeric materials. Angewantde Chemie International Edition, 2019, 58( 29): 9682– 9695
https://doi.org/10.1002/anie.201813525
3 A D Drozdov , J D Christiansen . Thermo-mechanical behavior of elastomers with dynamic covalent bonds. International Journal of Engineering Science, 2020, 147 : 103200
https://doi.org/10.1016/j.ijengsci.2019.103200
4 J B Hou , X Q Zhang , D Wu . et al.. Tough self-healing elastomers based on the host-guest interaction of polycyclodextrin. ACS Applied Materials & Interfaces, 2019, 11( 12): 12105– 12113
https://doi.org/10.1021/acsami.9b00626
5 S Nevejans , N Ballard , M Fernández . et al.. The challenges of obtaining mechanical strength in self-healing polymers containing dynamic covalent bonds. Polymer, 2019, 179 : 121670
https://doi.org/10.1016/j.polymer.2019.121670
6 Y Peng , Y Yang , Q Wu . et al.. Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds. Polymer, 2018, 157 : 172– 179
https://doi.org/10.1016/j.polymer.2018.09.038
7 Z Wang , S Gangarapu , J Escorihuela . et al.. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 26): 15933– 15943
https://doi.org/10.1039/C9TA02054C
8 F Li , Z Xu , H Hu . et al.. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chemical Engineering Journal, 2021, 410 : 128363
https://doi.org/10.1016/j.cej.2020.128363
9 Z Liu , P Hong , Z Huang . et al.. Self-healing, reprocessing and 3D printing of transparent and hydrolysis-resistant silicone elastomers. Chemical Engineering Journal, 2020, 387 : 124142
https://doi.org/10.1016/j.cej.2020.124142
10 Y Nurhamiyah , A Amir , M Finnegan . et al.. Wholly biobased, highly stretchable, hydrophobic, and self-healing thermoplastic elastomer. ACS Applied Materials & Interfaces, 2021, 13( 5): 6720– 6730
https://doi.org/10.1021/acsami.0c23155
11 L Zhang , H Xiong , Q Wu . et al.. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Science China Materials, 2021, 64( 7): 1780– 1790
https://doi.org/10.1007/s40843-020-1558-6
12 P Galvez , S Lopez de Armentia , J Abenojar . et al.. Effect of moisture and temperature on thermal and mechanical properties of structural polyurethane adhesive joints. Composite Structures, 2020, 247 : 112443
https://doi.org/10.1016/j.compstruct.2020.112443
13 K Yang , Z Ge , M Zhang . et al.. Deep eutectic solvent based adhesive with dynamic adhesion, water-resistant and NIR-responsive retrieval properties. Chemical Engineering Journal, 2022, 439 : 135646
https://doi.org/10.1016/j.cej.2022.135646
14 T Li , Z Xie , J Xu . et al.. Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding. European Polymer Journal, 2018, 107 : 249– 257
https://doi.org/10.1016/j.eurpolymj.2018.08.005
15 L Lyu , D Li , Y Chen . et al.. Dynamic chemistry based self-healing of asphalt modified by diselenide-crosslinked polyurethane elastomer. Construction & Building Materials, 2021, 293 : 123480
https://doi.org/10.1016/j.conbuildmat.2021.123480
16 M Zhang , F Zhao , Y Luo . Self-healing mechanism of microcracks on waterborne polyurethane with tunable disulfide bond contents. ACS Omega, 2019, 4( 1): 1703– 1714
https://doi.org/10.1021/acsomega.8b02923
17 B Xu , F Han , X Pei . et al.. Concise and efficient self-healing cross-linked polyurethanes via the blocking/deblocking reaction of oxime urethanes. Industrial & Engineering Chemistry Research, 2021, 60( 30): 11095– 11105
https://doi.org/10.1021/acs.iecr.1c01446
18 L Zhang , Z Liu , X Wu . et al.. A highly efficient self-healing elastomer with unprecedented mechanical properties. Advanced Materials, 2019, 31( 23): 1901402
https://doi.org/10.1002/adma.201901402
19 Z Liu , L Zhang , Q Guan . et al.. Biomimetic materials with multiple protective functionalities. Advanced Functional Materials, 2019, 29( 28): 1901058
https://doi.org/10.1002/adfm.201901058
20 F Ji , J Li , G Zhang . et al.. Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds. Polymer, 2019, 184 : 121882
https://doi.org/10.1016/j.polymer.2019.121882
21 X Lei , Y Huang , S Liang . et al.. Preparation of highly transparent, room-temperature self-healing and recyclable silicon elastomers based on dynamic imine bond and their ion responsive properties. Materials Letters, 2020, 268 : 127598
https://doi.org/10.1016/j.matlet.2020.127598
22 P Wang , L Yang , B Dai . et al.. A self-healing transparent polydimethylsiloxane elastomer based on imine bonds. European Polymer Journal, 2020, 123 : 109382
https://doi.org/10.1016/j.eurpolymj.2019.109382
23 H Zhang , D Wang , W Liu . et al.. Recyclable polybutadiene elastomer based on dynamic imine bond. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55( 12): 2011– 2018
https://doi.org/10.1002/pola.28577
24 B Gyarmati , Á Némethy , A Szilágyi . Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications. European Polymer Journal, 2013, 49( 6): 1268– 1286
https://doi.org/10.1016/j.eurpolymj.2013.03.001
25 O R Cromwell , J Chung , Z Guan . Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. Journal of the American Chemical Society, 2015, 137( 20): 6492– 6495
https://doi.org/10.1021/jacs.5b03551
26 F Xie , T Zhang , P Bryant . et al.. Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science, 2019, 90 : 211– 268
https://doi.org/10.1016/j.progpolymsci.2018.12.003
27 J Kang , D Son , G N Wang . et al.. Tough and water-insensitive self-healing elastomer for robust electronic skin. Advanced Materials, 2018, 30( 13): 1706846
https://doi.org/10.1002/adma.201706846
28 Y Liu , J Zheng , X Zhang . et al.. Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and water-resistance. Journal of Colloid and Interface Science, 2021, 593 : 105– 115
https://doi.org/10.1016/j.jcis.2021.03.003
29 W B Ying , Z Yu , D H Kim . et al.. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Applied Materials & Interfaces, 2020, 12( 9): 11072– 11083
https://doi.org/10.1021/acsami.0c00443
30 K J Li , C Wang , T T Zheng . et al.. Towards high performance anti-aging diolefin elastomers based on structure healing strategy. Polymer, 2020, 186 : 122076
https://doi.org/10.1016/j.polymer.2019.122076
31 W Li , X Liu , A Sun . et al.. Exploring piperazine for intrinsic weather-proof, robust and self-healable poly(urethane urea) toward surface and tire protection. Polymer, 2021, 227 : 123829
https://doi.org/10.1016/j.polymer.2021.123829
32 X Liu , X Liu , W Li . et al.. Engineered self-healable elastomer with giant strength and toughness via phase regulation and mechano-responsive self-reinforcing. Chemical Engineering Journal, 2021, 410 : 128300
https://doi.org/10.1016/j.cej.2020.128300
33 Y C Jean . Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchemical Journal, 1990, 42( 1): 72– 102
https://doi.org/10.1016/0026-265X(90)90027-3
34 G Galland , T M Lam . Permeability and diffusion of gases in segmented polyurethanes: structure–properties relations. Journal of Applied Polymer Science, 1993, 50( 6): 1041– 1058
https://doi.org/10.1002/app.1993.070500613
35 M Pegoraro , L Zanderighi , A Penati . et al.. Polyurethane membranes from polyether and polyester diols for gas fractionation. Journal of Applied Polymer Science, 1991, 43( 4): 687– 697
https://doi.org/10.1002/app.1991.070430406
36 K H Hsieh , C C Tsai , S M Tseng . Vapor and gas permeability of polyurethane membranes. Part I. Structure–property relationship. Journal of Membrane Science, 1990, 49( 3): 341– 350
https://doi.org/10.1016/S0376-7388(00)80647-X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed