Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2022, Vol. 16 Issue (2): 220603   https://doi.org/10.1007/s11706-022-0603-y
  本期目录
Why is graphene an extraordinary material? A review based on a decade of research
Sachin Sharma Ashok KUMAR1, Shahid BASHIR1,2, Kasi RAMESH1(), Subramaniam RAMESH1
1. Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
2. Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
 全文: PDF(104664 KB)   HTML
Abstract

During this decade, graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength, very good current density, high thermal conductivity, superior electrical conductivity, large surface area, and good electron mobility. The research on graphene has exponentially accelerated specially when Geim and Novoselov developed and analyzed graphene. On this basis, for industrial application, researchers are exploring different techniques to produce high-quality graphene. Therefore, reviewed in this article is a brief introduction to graphene and its derivatives along with some of the methods developed to synthesize graphene and its prospective applications in both research and industry. In this work, recent advances on applications of graphene in various fields such as sensors, energy storage, energy harvesting, high-speed optoelectronics, supercapacitors, touch-based flexible screens, and organic light emitting diode displays have been summarized.

Key wordsgraphene    graphene oxide    electrochemical sensor    fuel cell    supercapacitor    dye-sensitized fuel cell    lithium battery    energy storage
收稿日期: 2022-01-31      出版日期: 2022-07-08
Corresponding Author(s): Kasi RAMESH   
 引用本文:   
. [J]. Frontiers of Materials Science, 2022, 16(2): 220603.
Sachin Sharma Ashok KUMAR, Shahid BASHIR, Kasi RAMESH, Subramaniam RAMESH. Why is graphene an extraordinary material? A review based on a decade of research. Front. Mater. Sci., 2022, 16(2): 220603.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-022-0603-y
https://academic.hep.com.cn/foms/CN/Y2022/V16/I2/220603
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Material incorporated with graphene electrode Approach Linear range/(μmol·L?1) Limit of detection/(μmol·L?1) Ref.
Copper (Cu) Hummers method 0–4.5 0.5 [102]
Nickel oxide (NiO) Hummers method 0.0005–3000 1.73 [103]
Zinc oxide (ZnO) Electrodeposition 0.02–22.48 0.02 [98]
Carbon nano-spheres Screen printing 0.05–6 0.02 [104]
Cerium oxide (CeO2) Oxidation 12–7200 4 [87]
Tab.1  
Fig.10  
Fig.11  
Material incorporated with graphene electrode Approach Gauge factor Strain/% Ref.
PDMS CVD 14 7.1 [121]
PET Drop casting 9.49 7.5 [122]
PDMS CVD 106 7 [123]
Nano-graphene films PECVDa) 300 0.37 [107]
GO Hummers method 7.1 100 [117]
Tab.2  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Application Doping Advantages Refs.
Batteries Doped: B/N/P/S;Co-doped: B-N/N-S/N-P The electrochemical stability and interface between graphene and metal oxide particles is enhanced, high and uniform loading of nanoparticles is enabled and a balance between Li/Na and diffusion is achieved. [232240]
Solar cells Doped: B/N/P/S;Co-doped: B-P/N-S/N-P The adsorptive and charge-transfer abilities are enhanced towards the reduction of the DSSC, increase in graphene function and catalytic activity of the DSSC counter electrodes. [241249]
Fuel cells Doped: B/N/P/S;Co-doped: B-N/N-S/N-P/P-S The charge polarization is induced and the oxygen adsorption and cleavage is enhanced by the spin density, provides exceptional stability of platinum electrocatalysts in doped structure and enables abundant and uniform loading of metal nanoparticles. [250259]
Supercapacitors Doped: B/N/P/S;Co-doped: B-N/N-S/P-S The electrochemical performance is enhanced and the charge-transfer resistance is decreased, improving interlayer separation, better conductivity, band-gap opening and appropriate for specific device application. [260267]
Water splitting Doped: N/S;Co-doped: B-N/N-S/N-P The electrocatalytic activity is enhanced, and the photocatalytic activity is enhanced by the assistance of a good matrix support for semiconductor-based photocatalysts. [268273]
Tab.3  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
1 V Y, Aristov G, Urbanik K, Kummer , et al.. Graphene synthesis on cubic SiC/Si wafers. perspectives for mass production of graphene-based electronic devices. Nano Letters, 2010, 10( 3): 992– 995
https://doi.org/10.1021/nl904115h pmid: 20141155
2 Y, Hernandez V, Nicolosi M, Lotya , et al.. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3( 9): 563– 568
https://doi.org/10.1038/nnano.2008.215 pmid: 18772919
3 J, Paredes S, Villar-Rodil M J, Fernández-Merino , et al.. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. Journal of Materials Chemistry, 2011, 21( 2): 298– 306
https://doi.org/10.1039/C0JM01717E
4 D A, Dikin S, Stankovich E J, Zimney , et al.. Preparation and characterization of graphene oxide paper. Nature, 2007, 448( 7152): 457– 460
https://doi.org/10.1038/nature06016 pmid: 17653188
5 K M, Shahil A A Balandin . Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Communications, 2012, 152( 15): 1331– 1340
https://doi.org/10.1016/j.ssc.2012.04.034
6 P, Avouris F Xia . Graphene applications in electronics and photonics. MRS Bulletin, 2012, 37( 12): 1225– 1234
https://doi.org/10.1557/mrs.2012.206
7 K S, Novoselov V I, Fal’ko L, Colombo , et al.. A roadmap for graphene. Nature, 2012, 490( 7419): 192– 200
https://doi.org/10.1038/nature11458 pmid: 23060189
8 E P, Randviir D A, Brownson C E Banks . A decade of graphene research: production, applications and outlook. Materials Today, 2014, 17( 9): 426– 432
https://doi.org/10.1016/j.mattod.2014.06.001
9 X, Zhao C M, Hayner M C, Kung , et al.. In-plane vacancy-enabled high-power Si‒graphene composite electrode for lithium-ion batteries. Advanced Energy Materials, 2011, 1( 6): 1079– 1084
https://doi.org/10.1002/aenm.201100426
10 H, Wang K, Sun F, Tao , et al.. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angewandte Chemie International Edition in English, 2013, 52( 35): 9210– 9214
https://doi.org/10.1002/anie.201303497 pmid: 23897636
11 D, Prasai J C, Tuberquia R R, Harl , et al.. Graphene: corrosion-inhibiting coating. ACS Nano, 2012, 6( 2): 1102– 1108
https://doi.org/10.1021/nn203507y pmid: 22299572
12 W J, Hyun O O, Park B D Chin . Foldable graphene electronic circuits based on paper substrates. Advanced Materials, 2013, 25( 34): 4729– 4734
https://doi.org/10.1002/adma.201302063 pmid: 23847145
13 K A, Madurani S, Suprapto N I, Machrita , et al.. Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS Journal of Solid State Science and Technology: JSS, 2020, 9( 9): 093013
https://doi.org/10.1149/2162-8777/abbb6f
14 W, Ren H M Cheng . The global growth of graphene. Nature Nanotechnology, 2014, 9( 10): 726– 730
https://doi.org/10.1038/nnano.2014.229 pmid: 25286256
15 A, Arshad M, Jabbal Y, Yan , et al.. A review on graphene based nanofluids: preparation, characterization and applications. Journal of Molecular Liquids, 2019, 279 : 444– 484
https://doi.org/10.1016/j.molliq.2019.01.153
16 J H, Choi C, Lee S, Cho , et al.. High capacitance and energy density supercapacitor based on biomass-derived activated carbons with reduced graphene oxide binder. Carbon, 2018, 132 : 16– 24
https://doi.org/10.1016/j.carbon.2018.01.105
17 D A, Brownson C E Banks . Graphene electrochemistry: an overview of potential applications. Analyst, 2010, 135( 11): 2768– 2778
https://doi.org/10.1039/c0an00590h pmid: 20890532
18 K E Jr, Whitener P E Sheehan . Graphene synthesis. Diamond and Related Materials, 2014, 46 : 25– 34
https://doi.org/10.1016/j.diamond.2014.04.006
19 H, Nakano H, Tetsuka M J S, Spencer , et al.. Chemical modification of group IV graphene analogs. Science and Technology of Advanced Materials, 2018, 19( 1): 76– 100
https://doi.org/10.1080/14686996.2017.1422224 pmid: 29410713
20 E B, Bahadır M K Sezgintürk . Applications of graphene in electrochemical sensing and biosensing. Trends in Analytical Chemistry, 2016, 76 : 1– 14
https://doi.org/10.1016/j.trac.2015.07.008
21 S, Sarma S C, Ray A M Strydom . Electronic and magnetic properties of nitrogen functionalized graphene-oxide. Diamond and Related Materials, 2017, 79 : 1– 6
https://doi.org/10.1016/j.diamond.2017.08.011
22 D G, Papageorgiou I A, Kinloch R J Young . Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90 : 75– 127
https://doi.org/10.1016/j.pmatsci.2017.07.004
23 Y, Zhong Z, Zhen H Zhu . Graphene: fundamental research and potential applications. FlatChem, 2017, 4 : 20– 32
https://doi.org/10.1016/j.flatc.2017.06.008
24 S, Schöche N, Hong M, Khorasaninejad , et al.. Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. Applied Surface Science, 2017, 421 : 778– 782
https://doi.org/10.1016/j.apsusc.2017.01.035
25 R, Kumar del Pino A, Pérez S, Sahoo , et al.. Laser processing of graphene and related materials for energy storage: state of the art and future prospects. Progress in Energy and Combustion Science, 2022, 100981
https://doi.org/10.1016/j.pecs.2021.100981
26 P, Bollella G, Fusco C, Tortolini , et al.. Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosensors & Bioelectronics, 2017, 89( Pt 1): 152– 166
https://doi.org/10.1016/j.bios.2016.03.068 pmid: 27132999
27 K, Dericiler H M, Alishah S, Bozar , et al.. A novel method for graphene synthesis via electrochemical process and its utilization in organic photovoltaic devices. Applied Physics A: Materials Science & Processing, 2020, 126( 11): 904
https://doi.org/10.1007/s00339-020-04091-3
28 A, Hosseinzadeh S, Bidmeshkipour Y, Abdi , et al.. Graphene based strain sensors: a comparative study on graphene and its derivatives. Applied Surface Science, 2018, 448 : 71– 77
https://doi.org/10.1016/j.apsusc.2018.04.099
29 P, Salvo B, Melai N, Calisi , et al.. Graphene-based devices for measuring pH. Sensors and Actuators B: Chemical, 2018, 256 : 976– 991
https://doi.org/10.1016/j.snb.2017.10.037
30 A T Lawal . Progress in utilisation of graphene for electrochemical biosensors. Biosensors & Bioelectronics, 2018, 106 : 149– 178
https://doi.org/10.1016/j.bios.2018.01.030 pmid: 29414083
31 R, Zhang W Chen . Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors & Bioelectronics, 2017, 89( Pt 1): 249– 268
https://doi.org/10.1016/j.bios.2016.01.080 pmid: 26852831
32 Y, Zhang L, Sheng Y, Fang , et al.. Synthesis of 3C-SiC nanowires from a graphene/Si configuration obtained by arc discharge method. Chemical Physics Letters, 2017, 678 : 17– 22
https://doi.org/10.1016/j.cplett.2017.04.008
33 D, Zhang K, Ye Y, Yao , et al.. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon, 2019, 142 : 278– 284
https://doi.org/10.1016/j.carbon.2018.10.062
34 G W, Cheng K, Chu J S, Chen , et al.. Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system. Superlattices and Microstructures, 2017, 104 : 258– 265
https://doi.org/10.1016/j.spmi.2017.02.040
35 S, Lee S, Lim E, Lim , et al.. Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer. The Journal of Physics and Chemistry of Solids, 2010, 71( 4): 483– 486
https://doi.org/10.1016/j.jpcs.2009.12.017
36 Silva K, De H H, Huang R K, Joshi , et al.. Chemical reduction of graphene oxide using green reductants. Carbon, 2017, 119 : 190– 199
https://doi.org/10.1016/j.carbon.2017.04.025
37 S, Park R S Ruoff . Synthesis and characterization of chemically modified graphenes. Current Opinion in Colloid & Interface Science, 2015, 20( 5–6): 322– 328
https://doi.org/10.1016/j.cocis.2015.10.006
38 A H, Abdullah Z, Ismail Abidin A S, Zainal , et al.. Green sonochemical synthesis of few-layer graphene in instant coffee. Materials Chemistry and Physics, 2019, 222 : 11– 19
https://doi.org/10.1016/j.matchemphys.2018.09.085
39 M B, Muradov O O, Balayeva A A, Azizov , et al.. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared Physics & Technology, 2018, 89 : 255– 262
https://doi.org/10.1016/j.infrared.2018.01.014
40 F, Takahashi N, Yamamoto M, Todoriki , et al.. Sonochemical preparation of gold nanoparticles for sensitive colorimetric determination of nereistoxin insecticides in environmental samples. Talanta, 2018, 188 : 651– 657
https://doi.org/10.1016/j.talanta.2018.06.042 pmid: 30029426
41 S T, Hossain R Wang . Electrochemical exfoliation of graphite: effect of temperature and hydrogen peroxide addition. Electrochimica Acta, 2016, 216 : 253– 260
https://doi.org/10.1016/j.electacta.2016.09.022
42 J, Molina J, Bonastre J, Fernández , et al.. Electrochemical synthesis of polypyrrole doped with graphene oxide and its electrochemical characterization as membrane material. Synthetic Metals, 2016, 220 : 300– 310
https://doi.org/10.1016/j.synthmet.2016.06.028
43 E, Vaghri D, Dorranian M Ghoranneviss . Effects of CTAB concentration on the quality of graphene oxide nanosheets produced by green laser ablation. Materials Chemistry and Physics, 2018, 203 : 235– 242
https://doi.org/10.1016/j.matchemphys.2017.10.010
44 E, Ghavidel A H, Sari D Dorranian . Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method. Optics & Laser Technology, 2018, 103 : 155– 162
https://doi.org/10.1016/j.optlastec.2018.01.034
45 M, Jalili H, Ghanbari Bellah S, Moemen , et al.. High-quality liquid phase-pulsed laser ablation graphene synthesis by flexible graphite exfoliation. Journal of Materials Science and Technology, 2019, 35( 3): 292– 299
https://doi.org/10.1016/j.jmst.2018.09.048
46 R, Kumar S, Sahoo E, Joanni , et al.. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: recent progress and perspectives. Nano Research, 2019, 12( 11): 2655– 2694
https://doi.org/10.1007/s12274-019-2467-8
47 C, Liao Y, Li S C Tjong . Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. International Journal of Molecular Sciences, 2018, 19( 11): 3564
https://doi.org/10.3390/ijms19113564 pmid: 30424535
48 X, Xu Z, Zhang J, Dong , et al.. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62( 15): 1074– 1080
https://doi.org/10.1016/j.scib.2017.07.005
49 P R Wallace . The band theory of graphite. Physical Review, 1947, 71( 9): 622– 634
https://doi.org/10.1103/PhysRev.71.622
50 D R, Dreyer R S, Ruoff C W Bielawski . From conception to realization: a historial account of graphene and some perspectives for its future. Angewandte Chemie International Edition in English, 2010, 49( 49): 9336– 9344
https://doi.org/10.1002/anie.201003024 pmid: 21110353
51 A Geim . Graphene prehistory. Physica Scripta, 2012, 2012( T146): 014003
https://doi.org/10.1088/0031-8949/2012/T146/014003
52 L Staudenmaier . Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, 1898, 31( 2): 1481– 1487
https://doi.org/10.1002/cber.18980310237
53 B C Brodie . XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 1859, 149 : 249– 259
https://doi.org/10.1098/rstl.1859.0013
54 H P, Boehm A, Clauss G O, Fischer , et al.. Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Zeitschrift für Anorganische und Allgemeine Chemie, 1962, 316( 3–4): 119– 127
https://doi.org/10.1002/zaac.19623160303
55 Bommel A, Van J, Crombeen Tooren A Van . LEED and Auger electron observations of the SiC (0 0 0 1) surface. Surface Science, 1975, 48( 2): 463– 472
https://doi.org/10.1016/0039-6028(75)90419-7
56 S S, Kumar M N, Uddin M M, Rahman , et al.. Introducing graphene thin films into carbon fiber composite structures for lightning strike protection. Polymer Composites, 2019, 40( S1): E517– E525
https://doi.org/10.1002/pc.24850
57 C, Gómez-Navarro R T, Weitz A M, Bittner , et al.. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7( 11): 3499– 3503
https://doi.org/10.1021/nl072090c pmid: 17944526
58 X Y, Wang A, Narita K Müllen . Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2017, 2( 1): 1– 10
59 J, Guerrero-Contreras F Caballero-Briones . Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 2015, 153 : 209– 220
https://doi.org/10.1016/j.matchemphys.2015.01.005
60 D C, Marcano D V, Kosynkin J M, Berlin , et al.. Improved synthesis of graphene oxide. ACS Nano, 2010, 4( 8): 4806– 4814
https://doi.org/10.1021/nn1006368 pmid: 20731455
61 P, Feicht S Eigler . Defects in graphene oxide as structural motifs. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2018, 4( 3): 244– 252
https://doi.org/10.1002/cnma.201700357
62 Neto A J, Paulista E E Fileti . Elucidating the amphiphilic character of graphene oxide. Physical Chemistry Chemical Physics, 2018, 20( 14): 9507– 9515
https://doi.org/10.1039/C8CP00797G pmid: 29570194
63 J I, Paredes S, Villar-Rodil A, Martínez-Alonso , et al.. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24( 19): 10560– 10564
https://doi.org/10.1021/la801744a pmid: 18759411
64 S, Park J, An J R, Potts , et al.. Hydrazine-reduction of graphite- and graphene oxide. Carbon, 2011, 49( 9): 3019– 3023
https://doi.org/10.1016/j.carbon.2011.02.071
65 S S A, Kumar S, Bashir K, Ramesh , et al.. New perspectives on graphene/graphene oxide based polymer nanocomposites for corrosion applications: the relevance of the graphene/polymer barrier coatings. Progress in Organic Coatings, 2021, 154 : 106215
https://doi.org/10.1016/j.porgcoat.2021.106215
66 J, Zheng L, Wang R, Quhe , et al.. Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Scientific Reports, 2013, 3( 1): 1314
https://doi.org/10.1038/srep01314 pmid: 23419782
67 D A, Brownson D K, Kampouris C E Banks . Graphene electrochemistry: fundamental concepts through to prominent applications. Chemical Society Reviews, 2012, 41( 21): 6944– 6976
https://doi.org/10.1039/c2cs35105f pmid: 22850696
68 R R, Nair P, Blake A N, Grigorenko , et al.. Fine structure constant defines visual transparency of graphene. Science, 2008, 320( 5881): 1308
https://doi.org/10.1126/science.1156965 pmid: 18388259
69 C, Soldano A, Mahmood E Dujardin . Production, properties and potential of graphene. Carbon, 2010, 48( 8): 2127– 2150
https://doi.org/10.1016/j.carbon.2010.01.058
70 Y, Zhu S, Murali W, Cai , et al.. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22( 35): 3906– 3924
https://doi.org/10.1002/adma.201001068 pmid: 20706983
71 A A, Ghawanmeh G A M, Ali H, Algarni , et al.. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Research, 2019, 12( 5): 973– 990
https://doi.org/10.1007/s12274-019-2300-4
72 S S A, Kumar S, Bashir K, Ramesh , et al.. A comprehensive review: super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 2022, 31 : 100326
https://doi.org/10.1016/j.flatc.2021.100326
73 S S A, Sharma S, Bashir R, Kasi , et al.. The significance of graphene based composite hydrogels as smart materials: a review on the fabrication, properties, and its applications. FlatChem, 2022, 33 : 100352
https://doi.org/10.1016/j.flatc.2022.100352
74 S, Korkmaz I A Kariper . Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. Journal of Energy Storage, 2020, 27 : 101038
https://doi.org/10.1016/j.est.2019.101038
75 S K, Tiwari S, Sahoo N, Wang , et al.. Graphene research and their outputs: status and prospect. Journal of Science: Advanced Materials and Devices, 2020, 5( 1): 10– 29
https://doi.org/10.1016/j.jsamd.2020.01.006
76 R, Kumar S, Sahoo E, Joanni , et al.. Heteroatom doped graphene engineering for energy storage and conversion. Materials Today, 2020, 39 : 47– 65
https://doi.org/10.1016/j.mattod.2020.04.010
77 B, Luo S, Liu L Zhi . Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small, 2012, 8( 5): 630– 646
https://doi.org/10.1002/smll.201101396 pmid: 22121112
78 C, Xu B, Xu Y, Gu , et al.. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6( 5): 1388– 1414
https://doi.org/10.1039/c3ee23870a
79 Y, Lin X, Li D, Xie , et al.. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy & Environmental Science, 2013, 6( 1): 108– 115
https://doi.org/10.1039/C2EE23538B
80 M, Chakrabarti C T J, Low N P, Brandon , et al.. Progress in the electrochemical modification of graphene-based materials and their applications. Electrochimica Acta, 2013, 107 : 425– 440
https://doi.org/10.1016/j.electacta.2013.06.030
81 A T Lawal . Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta, 2015, 131 : 424– 443
https://doi.org/10.1016/j.talanta.2014.07.019 pmid: 25281124
82 C, Shan H, Yang J, Song , et al.. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry, 2009, 81( 6): 2378– 2382
https://doi.org/10.1021/ac802193c pmid: 19227979
83 X, Kang J, Wang H, Wu , et al.. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors & Bioelectronics, 2009, 25( 4): 901– 905
https://doi.org/10.1016/j.bios.2009.09.004 pmid: 19800781
84 Y, He Q, Sheng J, Zheng , et al.. Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application. Electrochimica Acta, 2011, 56( 5): 2471– 2476
https://doi.org/10.1016/j.electacta.2010.11.020
85 R S, Dey C R Raj . Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Applied Materials & Interfaces, 2013, 5( 11): 4791– 4798
https://doi.org/10.1021/am400280u pmid: 23721306
86 Z, Li C, Xie J, Wang , et al.. Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sensors and Actuators B: Chemical, 2015, 208 : 505– 511
https://doi.org/10.1016/j.snb.2014.11.054
87 M, Zhang R, Yuan Y, Chai , et al.. Cerium oxide–graphene as the matrix for cholesterol sensor. Analytical Biochemistry, 2013, 436( 2): 69– 74
https://doi.org/10.1016/j.ab.2013.01.022 pmid: 23380308
88 O, Akhavan E, Ghaderi A Esfandiar . Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. The Journal of Physical Chemistry B, 2011, 115( 19): 6279– 6288
https://doi.org/10.1021/jp200686k pmid: 21513335
89 T Y, Chen P T, Loan C L, Hsu , et al.. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosensors & Bioelectronics, 2013, 41 : 103– 109
https://doi.org/10.1016/j.bios.2012.07.059 pmid: 22944023
90 Y, Bo H, Yang Y, Hu , et al.. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta, 2011, 56( 6): 2676– 2681
https://doi.org/10.1016/j.electacta.2010.12.034
91 Y, Hu F, Li X, Bai , et al.. Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chemical Communications, 2011, 47( 6): 1743– 1745
https://doi.org/10.1039/C0CC04514D pmid: 21125081
92 M, Zhou Y, Zhai S Dong . Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009, 81( 14): 5603– 5613
https://doi.org/10.1021/ac900136z pmid: 19522529
93 F, Gao X, Cai X, Wang , et al.. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical, 2013, 186 : 380– 387
https://doi.org/10.1016/j.snb.2013.06.020
94 S J, Li J Z, He M J, Zhang , et al.. Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochimica Acta, 2013, 102 : 58– 65
https://doi.org/10.1016/j.electacta.2013.03.176
95 L, Yang D, Liu J, Huang , et al.. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B: Chemical, 2014, 193 : 166– 172
https://doi.org/10.1016/j.snb.2013.11.104
96 K, Matsumoto K, Maehashi Y, Ohno , et al.. Recent advances in functional graphene biosensors. Journal of Physics D: Applied Physics, 2014, 47( 9): 094005
https://doi.org/10.1088/0022-3727/47/9/094005
97 D, Khatayevich T, Page C, Gresswell , et al.. Selective detection of target proteins by peptide-enabled graphene biosensor. Small, 2014, 10( 8): 1505– 1513, 1504
https://doi.org/10.1002/smll.201302188 pmid: 24677773
98 S, Palanisamy S M, Chen R Sarawathi. A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sensors and Actuators B: Chemical, 2012, 166– 167: 166– 167
99 Y, Ye T, Kong X, Yu , et al.. Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta, 2012, 89 : 417– 421
https://doi.org/10.1016/j.talanta.2011.12.054 pmid: 22284511
100 J, Ju W Chen . In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Analytical Chemistry, 2015, 87( 3): 1903– 1910
https://doi.org/10.1021/ac5041555 pmid: 25533846
101 L A, Mercante M H M, Facure R C, Sanfelice , et al.. One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Applied Surface Science, 2017, 407 : 162– 170
https://doi.org/10.1016/j.apsusc.2017.02.156
102 J, Luo S, Jiang H, Zhang , et al.. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Analytica Chimica Acta, 2012, 709 : 47– 53
https://doi.org/10.1016/j.aca.2011.10.025 pmid: 22122930
103 H, Razmi R Mohammad-Rezaei . Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosensors & Bioelectronics, 2013, 41 : 498– 504
https://doi.org/10.1016/j.bios.2012.09.009 pmid: 23098855
104 D, Du Z, Zou Y, Shin , et al.. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Analytical Chemistry, 2010, 82( 7): 2989– 2995
https://doi.org/10.1021/ac100036p pmid: 20201502
105 C S, Boland U, Khan C, Backes , et al.. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano, 2014, 8( 9): 8819– 8830
https://doi.org/10.1021/nn503454h pmid: 25100211
106 M, Hempel D, Nezich J, Kong , et al.. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Letters, 2012, 12( 11): 5714– 5718
https://doi.org/10.1021/nl302959a pmid: 23045955
107 A, Nag A, Mitra S C Mukhopadhyay . Graphene and its sensor-based applications: a review. Sensors and Actuators A: Physical, 2018, 270 : 177– 194
https://doi.org/10.1016/j.sna.2017.12.028
108 Y, Xu Z, Guo H, Chen , et al.. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Applied Physics Letters, 2011, 99( 13): 133109
https://doi.org/10.1063/1.3643899
109 T Q, Trung N E Lee . Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Advanced Materials, 2016, 28( 22): 4338– 4372
https://doi.org/10.1002/adma.201504244 pmid: 26840387
110 S, Ryu P, Lee J B, Chou , et al.. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9( 6): 5929– 5936
https://doi.org/10.1021/acsnano.5b00599 pmid: 26038807
111 J, Viventi D H, Kim J D, Moss , et al.. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Science Translational Medicine, 2010, 2( 24): 24ra22
https://doi.org/10.1126/scitranslmed.3000738 pmid: 20375008
112 N K, Chang C C, Su S H Chang . Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Applied Physics Letters, 2008, 92( 6): 063501
https://doi.org/10.1063/1.2841669
113 D J, Lipomi M, Vosgueritchian B C, Tee , et al.. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 2011, 6( 12): 788– 792
https://doi.org/10.1038/nnano.2011.184 pmid: 22020121
114 J, Zhou H, Yu X, Xu , et al.. Ultrasensitive, stretchable strain sensors based on fragmented carbon nanotube papers. ACS Applied Materials & Interfaces, 2017, 9( 5): 4835– 4842
https://doi.org/10.1021/acsami.6b15195 pmid: 28094915
115 Y, Wang T, Yang J, Lao , et al.. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Research, 2015, 8( 5): 1627– 1636
https://doi.org/10.1007/s12274-014-0652-3
116 X, Li P, Sun L, Fan , et al.. Multifunctional graphene woven fabrics. Scientific Reports, 2012, 2( 1): 395
https://doi.org/10.1038/srep00395 pmid: 22563524
117 C, Yan J, Wang W, Kang , et al.. Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Advanced Materials, 2014, 26( 13): 2022– 2027
https://doi.org/10.1002/adma.201304742 pmid: 24343930
118 Z, Bai C, Zhou H, Xu , et al.. Polyoxometalates-doped Au nanoparticles and reduced graphene oxide: a new material for the detection of uric acid in urine. Sensors and Actuators B: Chemical, 2017, 243 : 361– 371
https://doi.org/10.1016/j.snb.2016.11.159
119 S, Afsahi M B, Lerner J M, Goldstein , et al.. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors & Bioelectronics, 2018, 100 : 85– 88
https://doi.org/10.1016/j.bios.2017.08.051 pmid: 28865242
120 M, Khalifa G, Wuzella H, Lammer , et al.. Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synthetic Metals, 2020, 266 : 116420
https://doi.org/10.1016/j.synthmet.2020.116420
121 S H, Bae Y, Lee B K, Sharma , et al.. Graphene-based transparent strain sensor. Carbon, 2013, 51 : 236– 242
https://doi.org/10.1016/j.carbon.2012.08.048
122 H, Tian Y, Shu Y L, Cui , et al.. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale, 2014, 6( 2): 699– 705
https://doi.org/10.1039/C3NR04521H pmid: 24281713
123 X, Li R, Zhang W, Yu , et al.. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2012, 2( 1): 870
https://doi.org/10.1038/srep00870 pmid: 23162694
124 A, Olabi M A, Abdelkareem T, Wilberforce , et al.. Application of graphene in energy storage device ― a review. Renewable & Sustainable Energy Reviews, 2021, 135 : 110026
https://doi.org/10.1016/j.rser.2020.110026
125 A M, Nassef A, Fathy E T, Sayed , et al.. Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms. Renewable Energy, 2019, 138 : 458– 464
https://doi.org/10.1016/j.renene.2019.01.072
126 H, Rezk E T, Sayed M, Al-Dhaifallah , et al.. Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system. Energy, 2019, 175 : 423– 433
https://doi.org/10.1016/j.energy.2019.02.167
127 M A, Abdelkareem W H, Tanveer E T, Sayed , et al.. On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2019, 101 : 361– 375
https://doi.org/10.1016/j.rser.2018.10.025
128 O, Ijaodola Z, El-Hassan E, Ogungbemi , et al.. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy, 2019, 179 : 246– 267
https://doi.org/10.1016/j.energy.2019.04.074
129 E, Ogungbemi O, Ijaodola F N, Khatib , et al.. Fuel cell membranes — pros and cons. Energy, 2019, 172 : 155– 172
https://doi.org/10.1016/j.energy.2019.01.034
130 F, Khatib T, Wilberforce O, Ijaodola , et al.. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: a review. Renewable & Sustainable Energy Reviews, 2019, 111 : 1– 14
https://doi.org/10.1016/j.rser.2019.05.007
131 A, Iwan M, Malinowski G Pasciak . Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renewable & Sustainable Energy Reviews, 2015, 49 : 954– 967
https://doi.org/10.1016/j.rser.2015.04.093
132 Y, Liang Y, Li H, Wang , et al.. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10( 10): 780– 786
https://doi.org/10.1038/nmat3087 pmid: 21822263
133 M A, Abdelkareem E T, Sayed H, Alawadhi , et al.. Synthesis and testing of cobalt leaf-like nanomaterials as an active catalyst for ethanol oxidation. International Journal of Hydrogen Energy, 2020, 45( 35): 17311– 17319
https://doi.org/10.1016/j.ijhydene.2020.04.156
134 Y, Ito T, Takeuchi T, Tsujiguchi , et al.. Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support. Journal of Power Sources, 2013, 242 : 280– 288
https://doi.org/10.1016/j.jpowsour.2013.05.064
135 C, Feng T, Takeuchi M A, Abdelkareem , et al.. Carbon–CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. Journal of Power Sources, 2013, 242 : 57– 64
https://doi.org/10.1016/j.jpowsour.2013.04.157
136 J, Zhang S, Tang L, Liao , et al.. Progress in non-platinum catalysts with applications in low temperature fuel cells. Chinese Journal of Catalysis, 2013, 34( 6): 1051– 1065
https://doi.org/10.1016/S1872-2067(12)60588-9
137 H, Wang Y, Liang Y, Li , et al.. Co1−xS–graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angewandte Chemie, 2011, 123( 46): 11161– 11164
https://doi.org/10.1002/ange.201104004
138 S, Guo S Sun . FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. Journal of the American Chemical Society, 2012, 134( 5): 2492– 2495
https://doi.org/10.1021/ja2104334 pmid: 22279956
139 Y, Liang H, Wang J, Zhou , et al.. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. Journal of the American Chemical Society, 2012, 134( 7): 3517– 3523
https://doi.org/10.1021/ja210924t pmid: 22280461
140 H, Bai C, Li G Shi . Functional composite materials based on chemically converted graphene. Advanced Materials, 2011, 23( 9): 1089– 1115
https://doi.org/10.1002/adma.201003753 pmid: 21360763
141 Z, Tao W, Chen J, Yang , et al.. Ultrathin yet transferrable Pt- or PtRu-decorated graphene films as efficient electrocatalyst for methanol oxidation reaction. Science China Materials, 2019, 62( 2): 273– 282
https://doi.org/10.1007/s40843-018-9366-x
142 Y, Shi W, Zhu H, Shi , et al.. Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction. Journal of Colloid and Interface Science, 2019, 557 : 729– 736
https://doi.org/10.1016/j.jcis.2019.09.038 pmid: 31563605
143 Y, Ji M, Hou Y, Zheng , et al.. A 3D network structured reduced graphene oxide/PtRu alloyed composite catalyst in-situ assembled via particle-constructing method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561 : 292– 300
https://doi.org/10.1016/j.colsurfa.2018.10.056
144 J, Zhao H, Li Z, Liu , et al.. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene. Carbon, 2015, 87 : 116– 127
https://doi.org/10.1016/j.carbon.2015.01.038
145 Y, Sun C, Du M, An , et al.. Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction. Journal of Power Sources, 2015, 300 : 245– 253
https://doi.org/10.1016/j.jpowsour.2015.09.046
146 J Y, Damte S L, Lyu E G, Leggesse , et al.. Methanol decomposition reactions over a boron-doped graphene supported Ru–Pt catalyst. Physical Chemistry Chemical Physics, 2018, 20( 14): 9355– 9363
https://doi.org/10.1039/C7CP07618E pmid: 29564450
147 Y, Li Y, Li E, Zhu , et al.. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. Journal of the American Chemical Society, 2012, 134( 30): 12326– 12329
https://doi.org/10.1021/ja3031449 pmid: 22783832
148 S, Pothaya J R, Regalbuto J R, Monnier , et al.. Preparation of Pt/graphene catalysts for polymer electrolyte membrane fuel cells by strong electrostatic adsorption technique. International Journal of Hydrogen Energy, 2019, 44( 48): 26361– 26372
https://doi.org/10.1016/j.ijhydene.2019.08.110
149 D H, Lim J Wilcox . Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. The Journal of Physical Chemistry C, 2012, 116( 5): 3653– 3660
https://doi.org/10.1021/jp210796e
150 X K, Kong Z, Sun M, Chen , et al.. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 2013, 6( 11): 3260– 3266
https://doi.org/10.1039/c3ee40918j
151 Y S, Yun D, Kim Y, Tak , et al.. Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell. Synthetic Metals, 2011, 161( 21–22): 2460– 2465
https://doi.org/10.1016/j.synthmet.2011.09.030
152 Y, Li W, Zhou H, Wang , et al.. An oxygen reduction electrocatalyst based on carbon nanotube‒graphene complexes. Nature Nanotechnology, 2012, 7( 6): 394– 400
https://doi.org/10.1038/nnano.2012.72 pmid: 22635099
153 K, Elsaid E T, Sayed M A, Abdelkareem , et al.. Environmental impact of desalination processes: mitigation and control strategies. The Science of the Total Environment, 2020, 740 : 140125
https://doi.org/10.1016/j.scitotenv.2020.140125 pmid: 32927546
154 K, Elsaid E T, Sayed M A, Abdelkareem , et al.. Environmental impact of emerging desalination technologies: a preliminary evaluation. Journal of Environmental Chemical Engineering, 2020, 8( 5): 104099
https://doi.org/10.1016/j.jece.2020.104099
155 A T, Damanabi M, Servatan S, Mazinani , et al.. Potential of tri-reforming process and membrane technology for improving ammonia production and CO2 reduction. The Science of the Total Environment, 2019, 664 : 567– 575
https://doi.org/10.1016/j.scitotenv.2019.01.391 pmid: 30763837
156 N, Roslan M E, Ya’acob M A M, Radzi , et al.. Dye sensitized solar cell (DSSC) greenhouse shading: new insights for solar radiation manipulation. Renewable & Sustainable Energy Reviews, 2018, 92 : 171– 186
https://doi.org/10.1016/j.rser.2018.04.095
157 J H, Park T W, Lee M G Kang . Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008, ( 25): 2867– 2869
https://doi.org/10.1039/b800660a pmid: 18566707
158 S, Hore C, Vetter R, Kern , et al.. Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90( 9): 1176– 1188
https://doi.org/10.1016/j.solmat.2005.07.002
159 A, Hagfeldt M Grätzel . Molecular photovoltaics. Accounts of Chemical Research, 2000, 33( 5): 269– 277
https://doi.org/10.1021/ar980112j pmid: 10813871
160 J C, Chou C H, Huang Y J, Lin , et al.. The influence of different annealing temperatures on graphene-modified TiO2 for dye-sensitized solar cell. IEEE Transactions on Nanotechnology, 2016, 15( 2): 164– 170
https://doi.org/10.1109/TNANO.2015.2510081
161 A K, Chandiran M, Abdi-Jalebi M K, Nazeeruddin , et al.. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano, 2014, 8( 3): 2261– 2268
https://doi.org/10.1021/nn405535j pmid: 24552648
162 A, Banik M S, Ansari T K, Sahu , et al.. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells. Physical Chemistry Chemical Physics, 2016, 18( 40): 27818– 27828
https://doi.org/10.1039/C6CP05544C pmid: 27711575
163 M, Bavir A Fattah . An investigation and simulation of the graphene performance in dye-sensitized solar cell. Optical and Quantum Electronics, 2016, 48( 12): 559
https://doi.org/10.1007/s11082-016-0821-6
164 K, Patil S, Rashidi H, Wang , et al.. Recent progress of graphene-based photoelectrode materials for dye-sensitized solar cells. International Journal of Photoenergy, 2019, 1812879
https://doi.org/10.1155/2019/1812879
165 A, Imbrogno R, Pandiyan A, Macario , et al.. Optimizing dye adsorption in graphene-TiO2 photoanodes for the enhancement of photoconversion efficiency of DSSC devices. IEEE International Journal of Photovoltaics, 2019, 9( 5): 1240– 1248
https://doi.org/10.1109/JPHOTOV.2019.2922381
166 Y C, Wang C P Cho . Application of TiO2-graphene nanocomposites to photoanode of dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332 : 1– 9
https://doi.org/10.1016/j.jphotochem.2016.07.036
167 A E, Kazzaz P Fatehi . Interaction of synthetic and lignin-based sulfonated polymers with hydrophilic, hydrophobic, and charged self-assembled monolayers. RSC Advances, 2020, 10( 60): 36778– 36793
https://doi.org/10.1039/D0RA07554J
168 P E, Marchezi G G, Sonai M K, Hirata , et al.. Understanding the role of reduced graphene oxide in the electrolyte of dye-sensitized solar cells. The Journal of Physical Chemistry C, 2016, 120( 41): 23368– 23376
https://doi.org/10.1021/acs.jpcc.6b07319
169 X, Cui J, Xiao Y, Wu , et al.. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angewandte Chemie International Edition in English, 2016, 55( 23): 6708– 6712
https://doi.org/10.1002/anie.201602097 pmid: 27089044
170 V, Murugadoss J, Lin H, Liu , et al.. Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells. Nanoscale, 2019, 11( 38): 17579– 17589
https://doi.org/10.1039/C9NR07060E pmid: 31553005
171 X, Wang L, Zhi K Müllen . Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 2008, 8( 1): 323– 327
https://doi.org/10.1021/nl072838r pmid: 18069877
172 T, Chen W, Hu J, Song , et al.. Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells. Advanced Functional Materials, 2012, 22( 24): 5245– 5250
https://doi.org/10.1002/adfm.201201126
173 T, Ramanathan A A, Abdala S, Stankovich , et al.. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 2008, 3( 6): 327– 331
https://doi.org/10.1038/nnano.2008.96 pmid: 18654541
174 H, Wang S L, Leonard Y H Hu . Promoting effect of graphene on dye-sensitized solar cells. Industrial & Engineering Chemistry Research, 2012, 51( 32): 10613– 10620
https://doi.org/10.1021/ie300563h
175 Y B, Tang C S, Lee J, Xu , et al.. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 2010, 4( 6): 3482– 3488
https://doi.org/10.1021/nn100449w pmid: 20455548
176 J, Liang G, Zhang J, Yang , et al.. TiO2 hierarchical nanostructures: hydrothermal fabrication and application in dye-sensitized solar cells. AIP Advances, 2015, 5( 1): 017141
https://doi.org/10.1063/1.4906988
177 B, Kilic S Turkdogan . Fabrication of dye-sensitized solar cells using graphene sandwiched 3D-ZnO nanostructures based photoanode and Pt-free pyrite counter electrode. Materials Letters, 2017, 193 : 195– 198
https://doi.org/10.1016/j.matlet.2017.01.128
178 S, Sun L, Gao Y Liu . Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Applied Physics Letters, 2010, 96( 8): 083113
https://doi.org/10.1063/1.3318466
179 X, Yan X, Cui B, Li , et al.. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letters, 2010, 10( 5): 1869– 1873
https://doi.org/10.1021/nl101060h pmid: 20377198
180 J, Wu Z, Lan J, Lin , et al.. Electrolytes in dye-sensitized solar cells. Chemical Reviews, 2015, 115( 5): 2136– 2173
https://doi.org/10.1021/cr400675m pmid: 25629644
181 S, Mathew A, Yella P, Gao , et al.. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6( 3): 242– 247
https://doi.org/10.1038/nchem.1861 pmid: 24557140
182 X, Liu Y, Liang G, Yue , et al.. A dual function of high efficiency quasi-solid-state flexible dye-sensitized solar cell based on conductive polymer integrated into poly (acrylic acid-co-carbon nanotubes) gel electrolyte. Solar Energy, 2017, 148 : 63– 69
https://doi.org/10.1016/j.solener.2017.03.070
183 F, Bella J R, Nair C Gerbaldi . Towards green, efficient and durable quasi-solid dye-sensitized solar cells integrated with a cellulose-based gel-polymer electrolyte optimized by a chemometric DoE approach. RSC Advances, 2013, 3( 36): 15993– 16001
https://doi.org/10.1039/c3ra41267a
184 C Y, Neo J Ouyang . The production of organogels using graphene oxide as the gelator for use in high-performance quasi-solid state dye-sensitized solar cells. Carbon, 2013, 54 : 48– 57
https://doi.org/10.1016/j.carbon.2012.11.002
185 K, Prabakaran P J, Jandas S, Mohanty , et al.. Synthesis, characterization of reduced graphene oxide nanosheets and its reinforcement effect on polymer electrolyte for dye sensitized solar cell applications. Solar Energy, 2018, 170 : 442– 453
https://doi.org/10.1016/j.solener.2018.05.008
186 W J, Lee E, Ramasamy D Y, Lee , et al.. Performance variation of carbon counter electrode based dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008, 92( 7): 814– 818
https://doi.org/10.1016/j.solmat.2007.12.012
187 H, Bönnemann G, Khelashvili S, Behrens , et al.. Role of the platinum nanoclusters in the iodide/triiodide redox system of dye solar cells. Journal of Cluster Science, 2007, 18( 1): 141– 155
https://doi.org/10.1007/s10876-006-0092-7
188 J D, Roy-Mayhew D J, Bozym C, Punckt , et al.. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4( 10): 6203– 6211
https://doi.org/10.1021/nn1016428 pmid: 20939517
189 A, Capasso S, Bellani A L, Palma , et al.. CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6( 3): 035007
https://doi.org/10.1088/2053-1583/ab117e
190 M S, Mahmoud M, Motlak N A Barakat . Facile synthesis and characterization of two dimensional SnO2-decorated graphene oxide as an effective counter electrode in the DSSC. Catalysts, 2019, 9( 2): 139
https://doi.org/10.3390/catal9020139
191 S, Kim K H, Cho J Y, Kim , et al.. Field study on operational performance and economics of lithium-polymer and lead-acid battery systems for consumer load management. Renewable & Sustainable Energy Reviews, 2019, 113 : 109234
https://doi.org/10.1016/j.rser.2019.06.041
192 Z, Li S, Gadipelli Y, Yang , et al.. Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Materials, 2019, 17 : 12– 21
https://doi.org/10.1016/j.ensm.2018.12.006
193 I A, Sahito K C, Sun A A, Arbab , et al.. Synergistic effect of thermal and chemical reduction of graphene oxide at the counter electrode on the performance of dye-sensitized solar cells. Solar Energy, 2019, 190 : 112– 118
https://doi.org/10.1016/j.solener.2019.08.012
194 C, Menachem E, Peled L, Burstein , et al.. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. Journal of Power Sources, 1997, 68( 2): 277– 282
https://doi.org/10.1016/S0378-7753(96)02629-8
195 J, Gong H, Wu Q Yang . Structural and electrochemical properties of disordered carbon prepared by the pyrolysis of poly (p-phenylene) below 1000 °C for the anode of a lithium-ion battery. Carbon, 1999, 37( 9): 1409– 1416
https://doi.org/10.1016/S0008-6223(99)00002-0
196 C W, Park S H, Yoon S I, Lee , et al.. Li+ storage sites in non-graphitizable carbons prepared from methylnaphthalene-derived isotropic pitches. Carbon, 2000, 38( 7): 995– 1001
https://doi.org/10.1016/S0008-6223(99)00205-5
197 S, Wang B, Yang H, Chen , et al.. Reconfiguring graphene for high-performance metal-ion battery anodes. Energy Storage Materials, 2019, 16 : 619– 624
https://doi.org/10.1016/j.ensm.2018.07.013
198 Y, Wu S, Fang Y Jiang . Carbon anode materials based on melamine resin. Journal of Materials Chemistry, 1998, 8( 10): 2223– 2227
https://doi.org/10.1039/a805080e
199 E, Yoo J, Kim E, Hosono , et al.. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8( 8): 2277– 2282
https://doi.org/10.1021/nl800957b pmid: 18651781
200 G, Derrien J, Hassoun S, Panero , et al.. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Advanced Materials, 2007, 19( 17): 2336– 2340
https://doi.org/10.1002/adma.200700748
201 Y, Li B, Tan Y Wu . Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Letters, 2008, 8( 1): 265– 270
https://doi.org/10.1021/nl0725906 pmid: 18072799
202 J G, Ren Q H, Wu G, Hong , et al.. Silicon‒graphene composite anodes for high-energy lithium batteries. Energy Technology, 2013, 1( 1): 77– 84
https://doi.org/10.1002/ente.200038
203 G, Girishkumar B, McCloskey A C, Luntz , et al.. Lithium–air battery: promise and challenges. The Journal of Physical Chemistry Letters, 2010, 1( 14): 2193– 2203
https://doi.org/10.1021/jz1005384
204 L H, Hu F Y, Wu C T, Lin , et al.. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nature Communications, 2013, 4 : 1687
205 X, Ren S S, Zhang D T, Tran , et al.. Oxygen reduction reaction catalyst on lithium/air battery discharge performance. Journal of Materials Chemistry, 2011, 21( 27): 10118– 10125
https://doi.org/10.1039/c0jm04170j
206 J, Xiao D, Mei X, Li , et al.. Hierarchically porous graphene as a lithium–air battery electrode. Nano Letters, 2011, 11( 11): 5071– 5078
https://doi.org/10.1021/nl203332e pmid: 21985448
207 J, Song Z, Yu M L, Gordin , et al.. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium‒sulfur batteries. Nano Letters, 2016, 16( 2): 864– 870
https://doi.org/10.1021/acs.nanolett.5b03217 pmid: 26709841
208 L, Ji P, Meduri V, Agubra , et al.. Graphene-based nanocomposites for energy storage. Advanced Energy Materials, 2016, 6( 16): 1502159
https://doi.org/10.1002/aenm.201502159
209 K C, Wasalathilake H, Li L, Xu , et al.. Recent advances in graphene based materials as anode materials in sodium-ion batteries. Journal of Energy Chemistry, 2020, 42 : 91– 107
https://doi.org/10.1016/j.jechem.2019.06.016
210 Y, You A Manthiram . Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Advanced Energy Materials, 2018, 8( 2): 1701785
https://doi.org/10.1002/aenm.201701785
211 S W, Kim D H, Seo X, Ma , et al.. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2( 7): 710– 721
https://doi.org/10.1002/aenm.201200026
212 B L, Ellis L F Nazar . Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 2012, 16( 4): 168– 177
https://doi.org/10.1016/j.cossms.2012.04.002
213 B, Jache P Adelhelm . Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angewandte Chemie International Edition in English, 2014, 53( 38): 10169– 10173
https://doi.org/10.1002/anie.201403734 pmid: 25056756
214 H, Kim J, Hong Y U, Park , et al.. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Advanced Functional Materials, 2015, 25( 4): 534– 541
https://doi.org/10.1002/adfm.201402984
215 Y, Wen K, He Y, Zhu , et al.. Expanded graphite as superior anode for sodium-ion batteries. Nature Communications, 2014, 5( 1): 4033
https://doi.org/10.1038/ncomms5033 pmid: 24893716
216 J, Ding H, Wang Z, Li , et al.. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano, 2013, 7( 12): 11004– 11015
https://doi.org/10.1021/nn404640c pmid: 24191681
217 M, Cabello X, Bai T, Chyrka , et al.. On the reliability of sodium co-intercalation in expanded graphite prepared by different methods as anodes for sodium-ion batteries. Journal of the Electrochemical Society, 2017, 164( 14): A3804– A3813
https://doi.org/10.1149/2.0211714jes
218 Y X, Wang S L, Chou H K, Liu , et al.. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon, 2013, 57 : 202– 208
https://doi.org/10.1016/j.carbon.2013.01.064
219 F, Zhang E, Alhajji Y, Lei , et al.. Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient. Advanced Energy Materials, 2018, 8( 23): 1800353
https://doi.org/10.1002/aenm.201800353
220 X, Li Y, Chen L, Zhou , et al.. Exceptional electrochemical performance of porous TiO2‒carbon nanofibers for lithium ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2( 11): 3875– 3880
https://doi.org/10.1039/C3TA14646D
221 J, Fang S, Wang Z, Li , et al.. Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4( 4): 1180– 1185
https://doi.org/10.1039/C5TA08869K
222 C, Wu P, Kopold Y L, Ding , et al.. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano, 2015, 9( 6): 6610– 6618
https://doi.org/10.1021/acsnano.5b02787 pmid: 26053194
223 H, Hou C E, Banks M, Jing , et al.. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Advanced Materials, 2015, 27( 47): 7861– 7866
https://doi.org/10.1002/adma.201503816 pmid: 26506218
224 X, Rui W, Sun C, Wu , et al.. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Advanced Materials, 2015, 27( 42): 6670– 6676
https://doi.org/10.1002/adma.201502864 pmid: 26417996
225 H, Kang Y, Liu K, Cao , et al.. Update on anode materials for Na-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 35): 17899– 17913
https://doi.org/10.1039/C5TA03181H
226 H G, Wang Z, Wu F L, Meng , et al.. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem, 2013, 6( 1): 56– 60
https://doi.org/10.1002/cssc.201200680 pmid: 23225752
227 Y, Yan Y X, Yin S, Xin , et al.. High-safety lithium‒sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochimica Acta, 2013, 91 : 58– 61
https://doi.org/10.1016/j.electacta.2012.12.077
228 H, Zhang H, Guo A, Li , et al.. High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries. Journal of Energy Chemistry, 2019, 31 : 159– 166
https://doi.org/10.1016/j.jechem.2018.06.002
229 M S, Balogun Y, Luo W, Qiu , et al.. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon, 2016, 98 : 162– 178
https://doi.org/10.1016/j.carbon.2015.09.091
230 J, Xu M, Wang N P, Wickramaratne , et al.. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Advanced Materials, 2015, 27( 12): 2042– 2048
https://doi.org/10.1002/adma.201405370 pmid: 25689053
231 C, Ling F Mizuno . Boron-doped graphene as a promising anode for Na-ion batteries. Physical Chemistry Chemical Physics, 2014, 16( 22): 10419– 10424
https://doi.org/10.1039/C4CP01045K pmid: 24760182
232 V, Naresh U, Bhattacharjee S K Martha . Boron doped graphene nanosheets as negative electrode additive for high-performance lead-acid batteries and ultracapacitors. Journal of Alloys and Compounds, 2019, 797 : 595– 605
https://doi.org/10.1016/j.jallcom.2019.04.311
233 X T, Gao X D, Zhu L L, Gu , et al.. Efficient polysulfides anchoring for Li‒S batteries: combined physical adsorption and chemical conversion in V2O5 hollow spheres wrapped in nitrogen-doped graphene network. Chemical Engineering Journal, 2019, 378 : 122189
https://doi.org/10.1016/j.cej.2019.122189
234 L, Zhan X, Zhou J, Luo , et al.. Ion assisted anchoring Sn nanoparticles on nitrogen-doped graphene as an anode for lithium ion batteries. International Journal of Hydrogen Energy, 2019, 44( 45): 24913– 24921
https://doi.org/10.1016/j.ijhydene.2019.07.153
235 M, Kim J, Lee Y, Jeon , et al.. Phosphorus-doped graphene nanosheets anchored with cerium oxide nanocrystals as effective sulfur hosts for high performance lithium–sulfur batteries. Nanoscale, 2019, 11( 29): 13758– 13766
https://doi.org/10.1039/C9NR03278A pmid: 31237295
236 G, Zhao D, Yu H, Zhang , et al.. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries. Nano Energy, 2020, 67 : 104219
https://doi.org/10.1016/j.nanoen.2019.104219
237 P, Han A Manthiram . Boron- and nitrogen-doped reduced graphene oxide coated separators for high-performance Li‒S batteries. Journal of Power Sources, 2017, 369 : 87– 94
https://doi.org/10.1016/j.jpowsour.2017.10.005
238 X, Ma G, Ning C, Qi , et al.. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Applied Materials & Interfaces, 2014, 6( 16): 14415– 14422
https://doi.org/10.1021/am503692g pmid: 25105538
239 T, Hou S, Yue X, Sun , et al.. Nitrogen-doped graphene coated FeS2 microsphere composite as high-performance anode materials for sodium-ion batteries enhanced by the chemical and structural synergistic effect. Applied Surface Science, 2020, 505 : 144633
https://doi.org/10.1016/j.apsusc.2019.144633
240 Z L, Wang D, Xu H G, Wang , et al.. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano, 2013, 7( 3): 2422– 2430
https://doi.org/10.1021/nn3057388 pmid: 23383862
241 M, Chen R H, Zha Z Y, Yuan , et al.. Boron and phosphorus co-doped carbon counter electrode for efficient hole-conductor-free perovskite solar cell. Chemical Engineering Journal, 2017, 313 : 791– 800
https://doi.org/10.1016/j.cej.2016.12.050
242 S, Chen Y, Xu C, Li , et al.. Modification of N-doped graphene films and their applications in heterojunction solar cells. Solar Energy, 2018, 174 : 66– 72
https://doi.org/10.1016/j.solener.2018.08.083
243 A, Dere B, Coskun A, Tataroğlu , et al.. Boron doped graphene based linear dynamic range photodiode. Physica B: Condensed Matter, 2018, 545 : 86– 93
https://doi.org/10.1016/j.physb.2018.05.046
244 Y, Liu Y, Wang X, Zheng , et al.. Synergistic effect of nitrogen and sulfur co-doped graphene as efficient metal-free counter electrode for dye-sensitized solar cells: a first-principle study. Computational Materials Science, 2017, 136 : 44– 51
https://doi.org/10.1016/j.commatsci.2017.04.029
245 X, Xu W, Yang B, Chen , et al.. Phosphorus-doped porous graphene nanosheet as metal-free electrocatalyst for triiodide reduction reaction in dye-sensitized solar cell. Applied Surface Science, 2017, 405 : 308– 315
https://doi.org/10.1016/j.apsusc.2017.02.074
246 W, Li G, Long Q, Chen , et al.. High-efficiency layered sulfur-doped reduced graphene oxide and carbon nanotube composite counter electrode for quantum dot sensitized solar cells. Journal of Power Sources, 2019, 430 : 95– 103
https://doi.org/10.1016/j.jpowsour.2019.05.020
247 D, Selvakumar G, Murugadoss A, Alsalme , et al.. Heteroatom doped reduced graphene oxide paper for large area perovskite solar cells. Solar Energy, 2018, 163 : 564– 569
https://doi.org/10.1016/j.solener.2018.01.084
248 C, Yu Z, Liu X, Meng , et al.. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016, 8( 40): 17458– 17464
https://doi.org/10.1039/C6NR00839A pmid: 27738679
249 M J, Ju J C, Kim H J, Choi , et al.. N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. ACS Nano, 2013, 7( 6): 5243– 5250
https://doi.org/10.1021/nn4009774 pmid: 23656316
250 Y, Zhu J, Cui S, An , et al.. Facile preparation of sulfur/nitrogen co-doped graphene coupled with Ni(OH)2 for battery-type electrode with superior electrochemical performance. Journal of Alloys and Compounds, 2019, 810 : 151932
https://doi.org/10.1016/j.jallcom.2019.151932
251 M, Klingele C, Pham K R, Vuyyuru , et al.. Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochemistry Communications, 2017, 77 : 71– 75
https://doi.org/10.1016/j.elecom.2017.02.015
252 F Y, Zheng R, Li S, Ge , et al.. Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells. Journal of Power Sources, 2020, 446 : 227356
https://doi.org/10.1016/j.jpowsour.2019.227356
253 K, Lv H, Zhang S Chen . Nitrogen and phosphorus co-doped carbon modified activated carbon as an efficient oxygen reduction catalyst for microbial fuel cells. RSC Advances, 2018, 8( 2): 848– 855
https://doi.org/10.1039/C7RA12907F
254 H B, Yang C, Guo L, Zhang , et al.. Nitrogen and sulfur co-doped graphene inlaid with cobalt clusters for efficient oxygen reduction reaction. Materials Today Energy, 2018, 10 : 184– 190
https://doi.org/10.1016/j.mtener.2018.09.011
255 G S, Kang S, Lee D C, Lee , et al.. Edge-enriched graphene with boron and nitrogen co-doping for enhanced oxygen reduction reaction. Current Applied Physics, 2020, 20( 3): 456– 461
https://doi.org/10.1016/j.cap.2020.01.008
256 W, Lee H N, Yang K W, Park , et al.. Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell. Energy, 2016, 96 : 314– 324
https://doi.org/10.1016/j.energy.2015.12.088
257 L, Qu Y, Liu J B, Baek , et al.. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4( 3): 1321– 1326
https://doi.org/10.1021/nn901850u pmid: 20155972
258 C, Park E, Lee G, Lee , et al.. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Applied Catalysis B: Environmental, 2020, 268 : 118414
https://doi.org/10.1016/j.apcatb.2019.118414
259 M, Gonzalez-Hernandez E, Antolini J Perez . CO tolerance and stability of PtRu and PtRuMo electrocatalysts supported on N-doped graphene nanoplatelets for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45( 8): 5276– 5284
https://doi.org/10.1016/j.ijhydene.2019.05.208
260 W, Fan Y Y, Xia W W, Tjiu , et al.. Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. Journal of Power Sources, 2013, 243 : 973– 981
https://doi.org/10.1016/j.jpowsour.2013.05.184
261 P, Karthika N, Rajalakshmi K S Dhathathreyan . Phosphorus-doped exfoliated graphene for supercapacitor electrodes. Journal of Nanoscience and Nanotechnology, 2013, 13( 3): 1746– 1751
https://doi.org/10.1166/jnn.2013.7112 pmid: 23755584
262 Z S, Wu A, Winter L, Chen , et al.. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24( 37): 5130– 5135
https://doi.org/10.1002/adma.201201948 pmid: 22807002
263 S, Yang X, Song P, Zhang , et al.. Facile synthesis of nitrogen-doped graphene‒ultrathin MnO2 sheet composites and their electrochemical performances. ACS Applied Materials & Interfaces, 2013, 5( 8): 3317– 3322
https://doi.org/10.1021/am400385g pmid: 23532663
264 X, Wu B, Ding C, Zhang , et al.. Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities. Carbon, 2019, 153 : 225– 233
https://doi.org/10.1016/j.carbon.2019.07.020
265 X, Yu Y, Kang H S Park . Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 2016, 101 : 49– 56
https://doi.org/10.1016/j.carbon.2016.01.073
266 F, Liu Z, Wang H, Zhang , et al.. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon, 2019, 149 : 105– 116
https://doi.org/10.1016/j.carbon.2019.04.023
267 H, Wang K, Zhang Y, Song , et al.. MnCo2S4 nanoparticles anchored to N- and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon, 2019, 146 : 420– 429
https://doi.org/10.1016/j.carbon.2019.02.035
268 X, Li X, Duan C, Han , et al.. Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon, 2019, 148 : 540– 549
https://doi.org/10.1016/j.carbon.2019.04.021
269 X, Shu S, Chen S, Chen , et al.. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn–air batteries and overall water splitting. Carbon, 2020, 157 : 234– 243
https://doi.org/10.1016/j.carbon.2019.10.023
270 S, Shinde A, Sami J H Lee . Sulfur mediated graphitic carbon nitride/S‒Se‒graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting. Carbon, 2016, 96 : 929– 936
https://doi.org/10.1016/j.carbon.2015.10.050
271 A, Kumatani C, Miura H, Kuramochi , et al.. Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction. Advanced Science, 2019, 6( 10): 1900119
https://doi.org/10.1002/advs.201900119 pmid: 31131204
272 D W, Chang J B Baek . Nitrogen-doped graphene for photocatalytic hydrogen generation. Chemistry: An Asian Journal, 2016, 11( 8): 1125– 1137
https://doi.org/10.1002/asia.201501328 pmid: 26762892
273 Q, Hu G, Li G, Li , et al.. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn–air batteries. Advanced Energy Materials, 2019, 9( 14): 1803867
https://doi.org/10.1002/aenm.201803867
274 L Gao . Flexible device applications of 2D semiconductors. Small, 2017, 13( 35): 1603994
https://doi.org/10.1002/smll.201603994 pmid: 28464480
275 Y R, Lim W, Song J K, Han , et al.. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Advanced Materials, 2016, 28( 25): 5025– 5030
https://doi.org/10.1002/adma.201600606 pmid: 27119775
276 S R, Tamalampudi Y Y, Lu U R, Kumar , et al.. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Letters, 2014, 14( 5): 2800– 2806
https://doi.org/10.1021/nl500817g pmid: 24742243
277 Q, Wang K, Xu Z, Wang , et al.. van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Letters, 2015, 15( 2): 1183– 1189
https://doi.org/10.1021/nl504258m pmid: 25603278
278 Y, Xue Y, Zhang Y, Liu , et al.. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10( 1): 573– 580
https://doi.org/10.1021/acsnano.5b05596 pmid: 26647019
279 Z, Zheng T, Zhang J, Yao , et al.. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology, 2016, 27( 22): 225501
https://doi.org/10.1088/0957-4484/27/22/225501 pmid: 27109239
280 C, Wu X, Lu L, Peng , et al.. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nature Communications, 2013, 4( 1): 2431
https://doi.org/10.1038/ncomms3431 pmid: 24026224
281 J, Bao X, Zhang L, Bai , et al.. All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2( 28): 10876– 10881
https://doi.org/10.1039/c3ta15293f
282 L, Chen G, Zhou Z, Liu , et al.. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Advanced Materials, 2016, 28( 3): 510– 517
https://doi.org/10.1002/adma.201503678 pmid: 26584241
283 C, Zhang H, Yin M, Han , et al.. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano, 2014, 8( 4): 3761– 3770
https://doi.org/10.1021/nn5004315 pmid: 24601530
284 J Pickering . Touch-sensitive screens: the technologies and their application. International Journal of Man-Machine Studies, 1986, 25( 3): 249– 269
https://doi.org/10.1016/S0020-7373(86)80060-8
285 S, Bae H, Kim Y, Lee , et al.. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5( 8): 574– 578
https://doi.org/10.1038/nnano.2010.132 pmid: 20562870
286 J, Ryu Y, Kim D, Won , et al.. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 2014, 8( 1): 950– 956
https://doi.org/10.1021/nn405754d pmid: 24358985
287 T, Das B K, Sharma A K, Katiyar , et al.. Graphene-based flexible and wearable electronics. Journal of Semiconductors, 2018, 39( 1): 011007
https://doi.org/10.1088/1674-4926/39/1/011007
288 J, Wu M, Agrawal H A, Becerril , et al.. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2010, 4( 1): 43– 48
https://doi.org/10.1021/nn900728d pmid: 19902961
289 P, Matyba H, Yamaguchi G, Eda , et al.. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano, 2010, 4( 2): 637– 642
https://doi.org/10.1021/nn9018569 pmid: 20131906
290 H, Chang G, Wang A, Yang , et al.. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Advanced Functional Materials, 2010, 20( 17): 2893– 2902
https://doi.org/10.1002/adfm.201000900
291 T H, Han Y, Lee M R, Choi , et al.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012, 6( 2): 105– 110
https://doi.org/10.1038/nphoton.2011.318
292 S Y, Kim J J Kim . Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Organic Electronics, 2010, 11( 6): 1010– 1015
https://doi.org/10.1016/j.orgel.2010.03.023
293 M, Furno R, Meerheim S, Hofmann , et al.. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Physical Review B: Condensed Matter and Materials Physics, 2012, 85( 11): 115205
https://doi.org/10.1103/PhysRevB.85.115205
294 J, Lee T H, Han M H, Park , et al.. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7( 1): 11791
https://doi.org/10.1038/ncomms11791 pmid: 27250743
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed