Ammonia borane-based reactive mixture for trapping and converting carbon dioxide
Carlos A. CASTILLA-MARTINEZ1, Bilge COŞKUNER FİLİZ2, Eddy PETIT1, Aysel KANTÜRK FİGEN3, Umit B. DEMIRCI1()
1. Institut Europeen des Membranes (IEM), UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France 2. Department of Metallurgy and Materials Engineering, Yildiz Technical University, İstanbul, Turkey 3. Department of Chemical Engineering, Yildiz Technical University, İstanbul, Turkey
Ammonia borane (NH3BH3) is a reducing agent, able to trap and convert carbon dioxide. In the present work, we used a reactive solid consisting of a mixture of 90 wt.% of NH3BH3 and 10 wt.% of palladium chloride, because the mixture reacts in a fast and exothermic way while releasing H2 and generating catalytic Pd0. We took advantage of such reactivity to trap and convert CO2 (7 bar), knowing besides that Pd0 is a CO2 hydrogenation catalyst. The operation (i.e. stage 1) was effective: BNH polymers, and B−O, C=O, C−O, and C−H bonds (like in BOCH3 and BOOCH groups) were identified. We then (in stage 2) pyrolyzed the as-obtained solid at 1250 °C and washed it with water. In doing so, we isolated cyclotriboric acid H3B3O6 (stemming from B2O3 formed at 1250 °C), hexagonal boron nitride, and graphitic carbon. In conclusion, the stage 1 showed that CO2 can be ‘trapped’ and converted, resulting in the formation of BOCH3 and BOOCH groups (possible sources of methanol and formic acid), and the stage 2 showed that CO2 transforms into graphitic carbon.
C, Bonneuil P L, Choquet B Franta . Early warnings and emerging accountability: total’s responses to global warming, 1971‒2021. Global Environmental Change, 2021, 71 : 102386 https://doi.org/10.1016/j.gloenvcha.2021.102386
2
J N U, Krishnan S C B Jakka . Carbon dioxide: no longer a global menace: a future source for chemicals. Materials Today: Proceedings, 2022, 58 : 812– 822 https://doi.org/10.1016/j.matpr.2021.09.271
3
A, Zoelle H McIlvried. Enthalpy and free energy of CO2 utilization pathways . National Energy Technology Laboratory; Released April 26, 2017; reference DOE/NETL-2017/1849. Available at (accessed November 9, 2021)
4
D, Franz C, Jandl C, Stark , et al.. Catalytic CO2 reduction with boron- and aluminum hydrides. ChemCatChem, 2019, 11( 21): 5275– 5281 https://doi.org/10.1002/cctc.201901255
pmid: 31894189
5
E C, Ra K Y, Kim E H, Kim , et al.. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catalysis, 2020, 10( 19): 11318– 11345 https://doi.org/10.1021/acscatal.0c02930
A G, Variar M S, Ramyashree V U, Ail , et al.. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: a review. Journal of Industrial and Engineering Chemistry, 2021, 99 : 19– 47 https://doi.org/10.1016/j.jiec.2021.04.017
8
V, Kumaravel J, Bartlett S C Pillai . Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Letters, 2020, 5( 2): 486– 519 https://doi.org/10.1021/acsenergylett.9b02585
9
J G Jr, Burr W G, Brown H E Heller . The reduction of carbon dioxide to formic acid. Journal of the American Chemical Society, 1950, 72( 6): 2560– 2562 https://doi.org/10.1021/ja01162a061
10
T, Wartik R K Pearson . Reactions of carbon dioxide with sodium and lithium borohydrides. Journal of Inorganic and Nuclear Chemistry, 1958, 7( 4): 404– 411 https://doi.org/10.1016/0022-1902(58)80250-X
11
I, Knopf C C Cummins . Revisiting CO2 reduction with NaBH4 under aprotic conditions: synthesis and characterization of sodium triformatoborohydride. Organometallics, 2015, 34( 9): 1601– 1603 https://doi.org/10.1021/acs.organomet.5b00190
12
I, Dovgaliuk H, Hagemann T, Leyssens , et al.. CO2-promoted hydrolysis of KBH4 for efficient hydrogen co-generation. International Journal of Hydrogen Energy, 2014, 39( 34): 19603– 19608 https://doi.org/10.1016/j.ijhydene.2014.09.068
13
C, Fletcher Y, Jiang R Amal . Production of formic acid from CO2 reduction by means of potassium borohydride at ambient conditions. Chemical Engineering Science, 2015, 137 : 301– 307 https://doi.org/10.1016/j.ces.2015.06.040
14
Y, Zhao Z, Zhang X, Qian , et al.. Properties of carbon dioxide absorption and reduction by sodium borohydride under atmospheric pressure. Fuel, 2015, 142 : 1– 8 https://doi.org/10.1016/j.fuel.2014.10.070
15
K A, Grice M C, Groenenboom J D A, Manuel , et al.. Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions. Fuel, 2015, 150 : 139– 145 https://doi.org/10.1016/j.fuel.2015.02.007
16
W, Zhu J, Zhao L, Wang , et al.. Mechanochemical reactions of alkali borohydride with CO2 under ambient temperature. Journal of Solid State Chemistry, 2019, 277 : 828– 832 https://doi.org/10.1016/j.jssc.2019.07.037
17
C V, Picasso D A, Safin I, Dovgaliuk , et al.. Reduction of CO2 with KBH4 in solvent-free conditions. International Journal of Hydrogen Energy, 2016, 41( 32): 14377– 14386 https://doi.org/10.1016/j.ijhydene.2016.04.052
18
K, Kadota E, Sivaniah S Horike . Reactivity of borohydride incorporated in coordination polymers toward carbon dioxide. Chemical Communications, 2020, 56( 38): 5111– 5114 https://doi.org/10.1039/D0CC01753A
pmid: 32292964
19
L, Lombardo H, Yang K, Zhao , et al.. Solvent- and catalyst-free carbon dioxide trap and reduction to formate with borohydride ionic liquid. ChemSusChem, 2020, 13( 8): 2025– 2031 https://doi.org/10.1002/cssc.201903514
pmid: 31994287
20
L, Lombardo Y, Ko K, Zhao , et al.. Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angewandte Chemie International Edition in English, 2021, 60( 17): 9580– 9589 https://doi.org/10.1002/anie.202100447
pmid: 33534140
21
G, Ménard D W Stephan . Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. Journal of the American Chemical Society, 2010, 132( 6): 1796– 1797 https://doi.org/10.1021/ja9104792
pmid: 20088527
22
L, Roy P M, Zimmerman A Paul . Changing lanes from concerted to stepwise hydrogenation: the reduction mechanism of frustrated Lewis acid-base pair trapped CO2 to methanol by ammonia-borane. Chemistry: A European Journal, 2011, 17( 2): 435– 439 https://doi.org/10.1002/chem.201002282
pmid: 21207556
23
G, Zeng S, Maeda T, Taketsugu , et al.. Catalytic hydrogenation of carbon dioxide with ammonia-borane by pincer-type phosphorus compounds: theoretical prediction. Journal of the American Chemical Society, 2016, 138( 41): 13481– 13484 https://doi.org/10.1021/jacs.6b07274
pmid: 27690395
24
A, Kumar J, Eyyathiyil J Choudhury . Reduction of carbon dioxide with ammonia-borane under ambient conditions: maneuvering a catalytic way. Inorganic Chemistry, 2021, 60( 15): 11684– 11692 https://doi.org/10.1021/acs.inorgchem.1c01803
pmid: 34270234
25
T, Zhao C, Li X, Hu , et al.. Base-assisted transfer hydrogenation of CO2 to formate with ammonia borane in water under mild conditions. International Journal of Hydrogen Energy, 2021, 46( 29): 15716– 15723 https://doi.org/10.1016/j.ijhydene.2021.02.015
26
J, Zhang Y, Zhao D L, Akins , et al.. CO2-enhanced thermolytic H2 release from ammonia borane. The Journal of Physical Chemistry C, 2011, 115( 16): 8386– 8392 https://doi.org/10.1021/jp200049y
27
R, Xiong J, Zhang Y, Zhao , et al.. Rapid release of 1.5 equivalents of hydrogen from CO2-treated ammonia borane. International Journal of Hydrogen Energy, 2012, 37( 4): 3344– 3349 https://doi.org/10.1016/j.ijhydene.2011.11.049
28
J, Zhang Y, Zhao X, Guan , et al.. Formation of graphene oxide nanocomposites from carbon dioxide using ammonia borane. The Journal of Physical Chemistry C, 2012, 116( 3): 2639– 2644 https://doi.org/10.1021/jp210295e
pmid: 22337562
29
F, Toche R, Chiriac U B, Demirci , et al.. Ammonia borane thermolytic decomposition in the presence of metal(II) chlorides. International Journal of Hydrogen Energy, 2012, 37( 8): 6749– 6755 https://doi.org/10.1016/j.ijhydene.2012.01.037
30
H, Bahruji M, Bowker G, Hutchings , et al.. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343 : 133– 146 https://doi.org/10.1016/j.jcat.2016.03.017
31
J F, Petit E, Dib P, Gaveau , et al.. 11B MAS NMR study of the thermolytic dehydrocoupling of two ammonia boranes upon the release of one equivalent of H2 at isothermal conditions. ChemistrySelect, 2017, 2( 29): 9396– 9401 https://doi.org/10.1002/slct.201702227
32
Z, Łodziana P, Błoński Y, Yan , et al.. NMR chemical shifts of 11B in metal borohydrides from first-principle calculations. The Journal of Physical Chemistry C, 2014, 118( 13): 6594– 6603 https://doi.org/10.1021/jp4120833
33
B, Roy U, Pal A, Bishnoi , et al.. Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy. Chemical Communications, 2021, 57( 15): 1887– 1890 https://doi.org/10.1039/D0CC06184K
pmid: 33491684
34
M, Bowden T, Autrey I, Brown , et al.. The thermal decomposition of ammonia borane: a potential hydrogen storage material. Current Applied Physics, 2008, 8( 3‒4): 498– 500 https://doi.org/10.1016/j.cap.2007.10.045
35
NIST X-ray Photoelectron Spectroscopy (XPS) Database. Available at (accessed March 19, 2022)
36
X, Gouin P, Grange L, Bois , et al.. Characterization of the nitridation process of boric acid. Journal of Alloys and Compounds, 1995, 224( 1): 22– 28 https://doi.org/10.1016/0925-8388(95)01532-9
37
P, Bachmann F, Düll F, Späth , et al.. A HR-XPS study of the formation of h-BN on Ni(1 1 1) from the two precursors, ammonia borane and borazine. The Journal of Chemical Physics, 2018, 149( 16): 164709 https://doi.org/10.1063/1.5051595
pmid: 30384738
38
J, Zhao J, Shi X, Zhang , et al.. A soft hydrogen storage material: poly(methyl acrylate)-confined ammonia borane with controllable dehydrogenation. Advanced Materials, 2010, 22( 3): 394– 397 https://doi.org/10.1002/adma.200902174
pmid: 20217726
39
M S, Bresnehan M J, Hollander M, Wetherington , et al.. Prospects of direct growth boron nitride films as substrates for graphene electronics. Journal of Materials Research, 2014, 29( 3): 459– 471 https://doi.org/10.1557/jmr.2013.323
40
L, Qiao Q, Li Z, Zhou , et al.. Inert can be advantageous: advisable reconstruction and application of palladium chloride for the preferential oxidation of the hydrogen impurity in carbon monoxide streams. ChemCatChem, 2016, 8( 11): 1909– 1914 https://doi.org/10.1002/cctc.201600301
41
N I, Mel’nikov D P, Peregood R A Zhitnikov . Investigation of silver centres in glassy B2O3. Journal of Non-Crystalline Solids, 1974, 16( 2): 195– 205 https://doi.org/10.1016/0022-3093(74)90124-0
42
F, Zhou D, Xu M, Shi , et al.. Investigation on microstructure and its transformation mechanisms of B2O3‒SiO2‒Al2O3‒CaO brazing flux system. High-Temperature Materials and Processes, 2020, 39( 1): 88– 95 https://doi.org/10.1515/htmp-2020-0021
43
L, Chen H F, Xu S J, He , et al.. Thermal conductivity performance of polypropylene composites filled with polydopamine-functionalized hexagonal boron nitride. PLoS One, 2017, 12( 1): e0170523 https://doi.org/10.1371/journal.pone.0170523
pmid: 28107466
44
E S, Lee J K, Park W S, Lee , et al.. Effect of deposition temperature on cubic boron nitride thin film deposited by unbalanced magnetron sputtering method with a nanocrystalline diamond buffer layer. Metals and Materials International, 2013, 19( 6): 1323– 1326 https://doi.org/10.1007/s12540-013-6029-4
45
L S, Rao P V, Rao M V N V D, Sharma , et al.. J-O parameters versus photoluminescence characteristics of 40Li2O‒4MO (MO = Nb2O5, MoO3 and WO3)‒55B2O3:1Nd2O3 glass systems. Optik, 2017, 142 : 674– 681 https://doi.org/10.1016/j.ijleo.2017.05.083
46
K Krishnan . The Raman spectra of boric acid. Proceedings of the Indian Academy of Sciences Section A: Physical Sciences, 1963, 57( 2): 103– 108 https://doi.org/10.1007/BF03046322
47
S, Yamauchi S Doi . Raman spectroscopic study on the behavior of boric acid in wood. Journal of Wood Science, 2003, 49( 3): 227– 234 https://doi.org/10.1007/s10086-002-0466-x
48
F, Tuinstra J L Koenig . Raman spectrum of graphite. The Journal of Chemical Physics, 1970, 53( 3): 1126– 1130 https://doi.org/10.1063/1.1674108
49
R, Arenal A C, Ferrari S, Reich , et al.. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Letters, 2006, 6( 8): 1812– 1816 https://doi.org/10.1021/nl0602544
pmid: 16895378
50
B B, Tatykaev M M, Burkitbayev B M, Uralbekov , et al.. Mechanochemical synthesis of silver chloride nanoparticles by a dilution method in the system NH4Cl‒AgNO3‒NH4NO3. Acta Physica Polonica A, 2014, 126( 4): 1044– 1048 https://doi.org/10.12693/APhysPolA.126.1044
51
S B, Kalidindi U, Sanyal B R Jagirdar . Metal nanoparticles via the atom-economy green approach. Inorganic Chemistry, 2010, 49( 9): 3965– 3967 https://doi.org/10.1021/ic100431k
pmid: 20369899
52
W, Chen H, Yu G, Wu , et al.. Ammonium aminodiboranate: a long-sought isomer of diammoniate of diborane and ammonia borane dimer. Chemistry: A European Journal, 2016, 22( 23): 7727– 7729 https://doi.org/10.1002/chem.201601375
pmid: 27017580