Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2022, Vol. 16 Issue (3): 220613   https://doi.org/10.1007/s11706-022-0613-9
  本期目录
Bimetallic Ni–Mo nitride@C3N4 for highly active and stable water catalysis
Xinping LI1, Min ZHOU1, Zhuoxun YIN1(), Xinzhi MA2(), Yang ZHOU3()
1. College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
2. School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
3. College of Science, Qiqihar University, Qiqihar 161006, China
 全文: PDF(2234 KB)   HTML
Abstract

Non-noble metal electrocatalysts for water cracking have excellent prospects for development of sustainable and clean energy. Highly efficient electrocatalysts for the oxygen evolution reaction (OER) are very important for various energy storage and conversion systems such as water splitting devices and metal‒air batteries. This study prepared a NiMo4@C3N4 catalyst for OER and hydrogen evolution reaction (HER) by simple methods. The catalyst exhibited an excellent OER activity based on the response at a suitable temperature. To drive a current density of 10 mA·cm−2 for OER and HER, the overpotentials required for NiMo4@C3N4-800 (prepared at 800 °C) were 259 and 118 mV, respectively. A two-electrode system using NiMo4@C3N4-800 needed a very low cell potential of 1.572 V to reach a current density of 10 mA·cm−2. In addition, this catalyst showed excellent durability after long-term tests. It was seen to have good catalytic activity and broad application prospects.

Key wordsstability    oxygen reduction reaction    water splitting    electrocatalyst
收稿日期: 2022-03-17      出版日期: 2022-07-28
Corresponding Author(s): Zhuoxun YIN,Xinzhi MA,Yang ZHOU   
 引用本文:   
. [J]. Frontiers of Materials Science, 2022, 16(3): 220613.
Xinping LI, Min ZHOU, Zhuoxun YIN, Xinzhi MA, Yang ZHOU. Bimetallic Ni–Mo nitride@C3N4 for highly active and stable water catalysis. Front. Mater. Sci., 2022, 16(3): 220613.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-022-0613-9
https://academic.hep.com.cn/foms/CN/Y2022/V16/I3/220613
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 X, Zhang F, Yan X, Ma , et al.. Regulation of morphology and electronic structure of FeCoNi layered double hydroxides for highly active and stable water oxidization catalysts. Advanced Energy Materials, 2021, 11( 48): 2102141
https://doi.org/10.1002/aenm.202102141
2 H B Gray . Powering the planet with solar fuel. Nature Chemistry, 2009, 1( 2): 112
https://doi.org/10.1038/nchem.206
3 J, Fan J, Wu X, Cui , et al.. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. Journal of the American Chemical Society, 2020, 142( 7): 3645– 3651
https://doi.org/10.1021/jacs.0c00218
4 J A Turner . Sustainable hydrogen production. Science, 2004, 305( 5686): 972– 974
https://doi.org/10.1126/science.1103197 pmid: 15310892
5 Y, Shi B Zhang . Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45( 6): 1529– 1541
https://doi.org/10.1039/C5CS00434A pmid: 26806563
6 S, Anantharaj S R, Ede K, Karthick , et al.. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018, 11( 4): 744– 771
https://doi.org/10.1039/C7EE03457A
7 M W, Kanan D G Nocera . In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321( 5892): 1072– 1075
https://doi.org/10.1126/science.1162018 pmid: 18669820
8 M G, Walter E L, Warren J R, McKone , et al.. Solar water splitting cells. Chemical Reviews, 2010, 110( 11): 6446– 6473
https://doi.org/10.1021/cr1002326 pmid: 21062097
9 S, Ye W, Xiong P, Liao , et al.. Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. Journal of Materials Chemistry A, 2020, 8( 22): 11246– 11254
https://doi.org/10.1039/D0TA02936J
10 B, Zhang L, Wang Z, Cao , et al.. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3( 12): 985– 992
https://doi.org/10.1038/s41929-020-00525-6
11 S, Anantharaj S, Kundu S Noda . “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80 : 105514
https://doi.org/10.1016/j.nanoen.2020.105514
12 Y, Jiao Y, Zheng M, Jaroniec , et al.. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44( 8): 2060– 2086
https://doi.org/10.1039/C4CS00470A pmid: 25672249
13 M S, Dresselhaus I L Thomas . Alternative energy technologies. Nature, 2001, 414( 6861): 332– 337
https://doi.org/10.1038/35104599 pmid: 11713539
14 X, Li X, Hao A, Abudula , et al.. Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 2016, 4( 31): 11973– 12000
https://doi.org/10.1039/C6TA02334G
15 T, Reier M, Oezaslan P Strasser . Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catalysis, 2012, 2( 8): 1765– 1772
https://doi.org/10.1021/cs3003098
16 J, Zhang T, Wang P, Liu , et al.. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8 : 15437
https://doi.org/10.1038/ncomms15437
17 J, Suntivich K J, May H A, Gasteiger , et al.. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334( 6061): 1383– 1385
https://doi.org/10.1126/science.1212858 pmid: 22033519
18 A, Singh S L Y, Chang R K, Hocking , et al.. Highly active nickel oxide water oxidation catalysts deposited from molecular complexes. Energy & Environmental Science, 2013, 6( 2): 579– 586
https://doi.org/10.1039/C2EE23862D
19 B, Zhang X, Zheng O, Voznyy , et al.. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352( 6283): 333– 337
https://doi.org/10.1126/science.aaf1525 pmid: 27013427
20 L, Trotochaud S L, Young J K, Ranney , et al.. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136( 18): 6744– 6753
https://doi.org/10.1021/ja502379c pmid: 24779732
21 M, Gao W, Sheng Z, Zhuang , et al.. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Journal of the American Chemical Society, 2014, 136( 19): 7077– 7084
https://doi.org/10.1021/ja502128j pmid: 24761994
22 F, Song X Hu . Ultrathin cobalt‒manganese layered double hydroxide is an efficient oxygen evolution catalyst. Journal of the American Chemical Society, 2014, 136( 47): 16481– 16484
https://doi.org/10.1021/ja5096733 pmid: 25380057
23 J, Ping Y, Wang Q, Lu , et al.. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Advanced Materials, 2016, 28( 35): 7640– 7645
https://doi.org/10.1002/adma.201601019 pmid: 27356037
24 J, Zhu K, Sakaushi G, Clavel , et al.. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. Journal of the American Chemical Society, 2015, 137( 16): 5480– 5485
https://doi.org/10.1021/jacs.5b01072 pmid: 25851622
25 W F, Chen J T, Muckerman E Fujita . Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49( 79): 8896– 8909
https://doi.org/10.1039/c3cc44076a pmid: 23982806
26 D, Ham J Lee . Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies, 2009, 2( 4): 873– 899
https://doi.org/10.3390/en20400873
27 C, Wan B M Leonard . Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction. Chemistry of Materials, 2015, 27( 12): 4281– 4288
https://doi.org/10.1021/acs.chemmater.5b00621
28 Y, Huang Q, Gong X, Song , et al.. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano, 2016, 10( 12): 11337– 11343
https://doi.org/10.1021/acsnano.6b06580 pmid: 28024342
29 Z C, Wang H L, Liu R X, Ge , et al.. Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catalysis, 2018, 8( 3): 2236– 2241
https://doi.org/10.1021/acscatal.7b03594
30 K, Xu P, Chen X, Li , et al.. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. Journal of the American Chemical Society, 2015, 137( 12): 4119– 4125
https://doi.org/10.1021/ja5119495 pmid: 25761452
31 W F, Chen K, Sasaki C, Ma , et al.. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angewandte Chemie International Edition, 2012, 51( 25): 6131– 6135
https://doi.org/10.1002/anie.201200699 pmid: 22565496
32 M, Shalom V, Molinari D, Esposito , et al.. Sponge-like nickel and nickel nitride structures for catalytic applications. Advanced Materials, 2014, 26( 8): 1272– 1276
https://doi.org/10.1002/adma.201304288 pmid: 24282139
33 M, Zhai F, Wang H Du . Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting. ACS Applied Materials & Interfaces, 2017, 9( 46): 40171– 40179
https://doi.org/10.1021/acsami.7b10680 pmid: 29098858
34 M, Sun H, Liu J, Qu , et al.. Earth-rich transition metal phosphide for energy conversion and storage. Advanced Energy Materials, 2016, 6( 13): 1600087
https://doi.org/10.1002/aenm.201600087
35 G, Zhang G, Wang Y, Liu , et al.. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. Journal of the American Chemical Society, 2016, 138( 44): 14686– 14693
https://doi.org/10.1021/jacs.6b08491 pmid: 27797511
36 S, Li G, Zhang X, Tu , et al.. Polycrystalline CoP/CoP2 structures for efficient full water splitting. ChemElectroChem, 2018, 5( 4): 701– 707
https://doi.org/10.1002/celc.201701112
37 P G, Lacroix M C, Munoz A B, Gaspar , et al.. Crystal structures, and solid state quadratic nonlinear optical properties of a series of stilbazolium cations combined with gold cyanide counter-ion. Journal of Materials Chemistry, 2011, 21( 40): 15940– 15949
https://doi.org/10.1039/c1jm12105g
38 J, Masa I, Sinev H, Mistry , et al.. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Advanced Energy Materials, 2017, 7( 17): 1700381
https://doi.org/10.1002/aenm.201700381
39 H, Zhu R, Jiang X, Chen , et al.. 3D nickel‒cobalt diselenide nanonetwork for highly efficient oxygen evolution. Science Bulletin, 2017, 62( 20): 1373– 1379
https://doi.org/10.1016/j.scib.2017.09.012
40 Y, Shi Y, Zhou D R, Yang , et al.. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. Journal of the American Chemical Society, 2017, 139( 43): 15479– 15485
https://doi.org/10.1021/jacs.7b08881 pmid: 29032672
41 W, Zheng H, Sun X, Li , et al.. Fe-doped NiCo2O4 hollow hierarchical sphere as an efficient electrocatalyst for oxygen evolution reaction. Frontiers of Materials Science, 2021, 15( 4): 577– 588
https://doi.org/10.1007/s11706-021-0579-z
42 Y, Wang C, Xie D, Liu , et al.. Nanoparticle-stacked porous nickel-iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Applied Materials & Interfaces, 2016, 8( 29): 18652– 18657
https://doi.org/10.1021/acsami.6b05811 pmid: 27348348
43 H, Wu C, Feng L, Zhang , et al.. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical Energy Reviews, 2021, 4( 3): 473– 507
https://doi.org/10.1007/s41918-020-00086-z
44 Z, Yin Y, Sun Y, Jiang , et al.. Hierarchical cobalt-doped molybdenum‒nickel nitride nanowires as multifunctional electrocatalysts. ACS Applied Materials & Interfaces, 2019, 11( 31): 27751– 27759
https://doi.org/10.1021/acsami.9b06543 pmid: 31305065
45 D, Friebel M W, Louie M, Bajdich , et al.. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. Journal of the American Chemical Society, 2015, 137( 3): 1305– 1313
https://doi.org/10.1021/ja511559d pmid: 25562406
46 M S, Burke M G, Kast L, Trotochaud , et al.. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Journal of the American Chemical Society, 2015, 137( 10): 3638– 3648
https://doi.org/10.1021/jacs.5b00281 pmid: 25700234
47 Z X, Yin S, Zhang W, Chen , et al.. Hybrid-atom-doped NiMoO4 nanotubes for oxygen evolution reaction. New Journal of Chemistry, 2020, 44( 40): 17477– 17482
https://doi.org/10.1039/D0NJ02305A
48 Z X, Yin S, Zhang J L, Li , et al.. In-situ fabrication of Ni–Fe–S hollow hierarchical sphere: an efficient (pre)catalyst for OER and HER. New Journal of Chemistry, 2021, 45( 29): 12996– 13003
https://doi.org/10.1039/D1NJ02382A
49 P, Chen K, Xu Z, Fang , et al.. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2015, 54( 49): 14710– 14714
https://doi.org/10.1002/anie.201506480
50 J, Xie J, Zhang S, Li , et al.. Correction to controllable disorder engineering in oxygen incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2014, 136( 4): 1680
https://doi.org/10.1021/ja4129636
51 M, Shalom D, Ressnig X F, Yang , et al.. Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 15): 8171– 8177
https://doi.org/10.1039/C5TA00078E
52 X, Xu F, Luo W, Tang , et al.. Enriching hot electrons via NIR-photon-excited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution. Advanced Functional Materials, 2018, 28( 43): 1804055
https://doi.org/10.1002/adfm.201804055
53 F, Wang Y, Sun Y, He , et al.. Highly efficient and durable MoNiNC catalyst for hydrogen evolution reaction. Nano Energy, 2017, 37 : 1– 6
https://doi.org/10.1016/j.nanoen.2017.04.050
54 T, Wang H, Wu C, Feng , et al.. Ni, N-coped NiMoO4 grown on 3D nickel foam as bifunctional electrocatalysts for hydrogenproduction in urea-water electrolysis. Electrochimica Acta, 2021, 391 : 138931
https://doi.org/10.1016/j.electacta.2021.138931
55 F, Cao M, Zhao Y, Yu , et al.. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. Journal of the American Chemical Society, 2016, 138( 22): 6924– 6927
https://doi.org/10.1021/jacs.6b02540 pmid: 27197611
56 M S, Faber K, Park M, Cabán-Acevedo , et al.. Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. The Journal of Physical Chemistry Letters, 2013, 4( 11): 1843– 1849
https://doi.org/10.1021/jz400642e pmid: 26283119
57 W, Xing Y, Zhang Q, Xue , et al.. Highly active catalyst of two-dimensional CoS2/graphene nanocomposites for hydrogen evolution reaction. Nanoscale Research Letters, 2015, 10 : 488
https://doi.org/10.1186/s11671-015-1198-3 pmid: 26691748
58 K S, Novoselov A K, Geim S V, Morozov , et al.. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438( 7065): 197– 200
https://doi.org/10.1038/nature04233 pmid: 16281030
59 Y, Yang F, Li W, Li , et al.. Porous CoS2 nanostructures based on ZIF-9 supported on reduced graphene oxide: favourable electrocatalysis for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42( 10): 6665– 6673
https://doi.org/10.1016/j.ijhydene.2017.01.186
60 Z, Guo T, Sun Y, Li , et al.. Large surface and pore structure of mesoporous WS2 and RGO nanosheets with small amount of Pt as a highly efficient electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43( 51): 22905– 22916
https://doi.org/10.1016/j.ijhydene.2018.10.150
61 C, Lu D, Tranca J, Zhang , et al.. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano, 2017, 11( 4): 3933– 3942
https://doi.org/10.1021/acsnano.7b00365 pmid: 28291319
62 Z, Yin Y, Sun C, Zhu , et al.. Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2017, 5( 26): 13648– 13658
https://doi.org/10.1039/C7TA02876H
63 C, Zhu Z, Yin W, Lai , et al.. Fe–Ni–Mo nitride porous nanotubes for full water splitting and Zn–air batteries. Advanced Energy Materials, 2018, 8( 36): 1802327
https://doi.org/10.1002/aenm.201802327
[1] FMS-22613-OF-Lxp_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed