The catalytic conversion of biomass platform chemicals using abundant non-noble metal nanocatalysts is a challenging topic. Here, high-density cobalt oxide nanoparticles loaded on biomass-derived porous N-doped carbon (NC) was fabricated by a tandem hydrothermal pyrolysis and mild nitrate decomposition process, which is a green and cheap preparation method. The Co3O4 nanoparticles with the average size of 12 nm were uniformly distributed on the porous NC. The nanocomposites also possessed large surface area, high N content, good dispersibility in isopropanol, and furfural absorbability. Due to these characteristics, the novel cobalt nanocatalyst exhibited high catalytic activity for producing furfuryl alcohol, yielding 98.7% of the conversion and 97.1% of the selectivity at 160 °C for 6 h under 1 bar H2. The control experiments implied that both direct hydrogenation and transfer hydrogenation pathways co-existed in the hydrogenation reaction. The excellent catalytic activity of Co3O4@NC was attributed to the cooperative effects of porous NC and Co3O4 nanoparticles. This approach provides a new idea to design effective high-density non-noble metal oxide nanocatalysts for hydrogenation reactions, which can make full use of sustainable natural biomass.
L, Shuai M T, Amiri Y M, Questell-Santiago et al.. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.Science, 2016, 354(6310): 329–333 https://doi.org/10.1126/science.aaf7810
pmid: 27846566
2
Y, Li W, Yang H, Liu et al.. Template-mediated strategy to regulate hierarchically nitrogen–sulfur co-doped porous carbon as superior anode material for lithium capacity.Frontiers of Materials Science, 2022, 16(1): 220584 https://doi.org/10.1007/s11706-022-0584-x
3
F, Chen X, Liu Z, Wang et al.. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage.Frontiers of Materials Science, 2022, 16(4): 220619 https://doi.org/10.1007/s11706-022-0619-3
4
Z, Xu M, He Y, Zhou et al.. Spider web-like carbonized bacterial cellulose/MoSe nanocomposite with enhanced microwave attenuation performance and tunable absorption bands.Nano Research, 2021, 14(3): 738–746 https://doi.org/10.1007/s12274-020-3107-z
5
S, Song J, Zhang G, Gözaydın et al.. Production of terephthalic acid from corn stover lignin.Angewandte Chemie - International Edition, 2019, 58(15): 4934–4937 https://doi.org/10.1002/anie.201814284
pmid: 30680864
6
J, Wu X, Zhang Q, Chen et al.. One-pot hydrogenation of furfural into tetrahydrofurfuryl alcohol under ambient conditions over PtNi alloy catalyst.Energy & Fuels, 2020, 34(2): 2178–2184 https://doi.org/10.1021/acs.energyfuels.9b02811
7
C, Aellig I Hermans . Continuous D-fructose dehydration to 5-hydroxymethylfurfural under mild conditions.ChemSusChem, 2012, 5(9): 1737–1742 https://doi.org/10.1002/cssc.201200279
pmid: 22761084
8
J P, Lange der Heide E, van Buijtenen J, van et al.. Furfural ― a promising platform for lignocellulosic biofuels.ChemSusChem, 2012, 5(1): 150–166 https://doi.org/10.1002/cssc.201100648
pmid: 22213717
9
Y X, Yang C, Ochoa-Hernández V A D, O’Shea et al.. Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts.Applied Catalysis B: Environmental, 2014, 145: 91–100 https://doi.org/10.1016/j.apcatb.2013.03.038
10
S A, Khromova M V, Bykova O A, Bulavchenko et al.. Furfural hydrogenation to furfuryl alcohol over bimetallic Ni–Cu sol-gel catalyst: a model reaction for conversion of oxygenates in pyrolysis liquids.Topics in Catalysis, 2016, 59(15–16): 1413–1423 https://doi.org/10.1007/s11244-016-0649-0
11
D, Scholz C, Aellig I Hermans . Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural.ChemSusChem, 2014, 7(1): 268–275 https://doi.org/10.1002/cssc.201300774
pmid: 24227625
12
V V, Ordomsky J C, Schouten der Schaaf J, van et al.. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural.Applied Catalysis A: General, 2013, 451: 6–13 https://doi.org/10.1016/j.apcata.2012.11.013
13
W, Xu H, Wang X, Liu et al.. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst.Chemical Communications, 2011, 47(13): 3924–3926 https://doi.org/10.1039/c0cc05775d
pmid: 21347475
14
Y, Nakagawa M, Tamura K Tomishige . Catalytic reduction of biomass-derived furanic compounds with hydrogen.ACS Catalysis, 2013, 3(12): 2655–2668 https://doi.org/10.1021/cs400616p
15
A, Corma S, Iborra A Velty . Chemical routes for the transformation of biomass into chemicals.Chemical Reviews, 2007, 107(6): 2411–2502 https://doi.org/10.1021/cr050989d
pmid: 17535020
16
R, Rao A, Dandekar R T K, Baker et al.. Properties of copper chromite catalysts in hydrogenation reactions.Journal of Catalysis, 1997, 171(2): 406–419 https://doi.org/10.1006/jcat.1997.1832
17
M, Hronec K, Fulajtarova I, Vavra et al.. Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone.Applied Catalysis B: Environmental, 2016, 181: 210–219 https://doi.org/10.1016/j.apcatb.2015.07.046
18
L, Ruan H, Zhang M, Zhou et al.. A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures.Molecular Catalysis, 2020, 480: 110639 https://doi.org/10.1016/j.mcat.2019.110639
19
X, Chen L, Zhang B, Zhang et al.. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.Scientific Reports, 2016, 6(1): 28558 https://doi.org/10.1038/srep28558
pmid: 27328834
20
Y, Jiang J, Su Y, Yang et al.. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties.Nano Research, 2016, 9(3): 849–856 https://doi.org/10.1007/s12274-015-0964-y
21
R V, Sharma U, Das R, Sammynaiken et al.. Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol.Applied Catalysis A: General, 2013, 454: 127–136 https://doi.org/10.1016/j.apcata.2012.12.010
22
T, Song Y Yang . Metal nanoparticles supported on biomass-derived hierarchical porous heteroatom-doped carbon from bamboo shoots: design, synthesis and applications.Chemical Record, 2019, 19(7): 1283–1301 https://doi.org/10.1002/tcr.201800105
pmid: 30276956
23
L, Zhu H, Zhang N, Ma et al.. Tuning the interfaces in the ruthenium–nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance.Journal of Catalysis, 2019, 377: 299–308 https://doi.org/10.1016/j.jcat.2019.07.041
24
H, Lin Y, Zhang G, Wang et al.. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte.Frontiers of Materials Science, 2012, 6(2): 142–148 https://doi.org/10.1007/s11706-012-0162-8
25
M, Sethi U S, Shenoy S, Muthu et al.. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications.Frontiers of Materials Science, 2020, 14(2): 120–132 https://doi.org/10.1007/s11706-020-0499-3
26
K, Wu X Y, Wang L L, Guo et al.. Facile synthesis of Au embedded CuOx–CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol.Nano Research, 2020, 13(8): 2044–2055 https://doi.org/10.1007/s12274-020-2806-9
27
G S, Zhang M M, Zhu Q, Zhang et al.. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts.Green Chemistry, 2016, 18(7): 2155–2164 https://doi.org/10.1039/C5GC02528A
28
E, Ortel S, Sokolov C, Zielke et al.. Supported mesoporous and hierarchical porous Pd/TiO2 catalytic coatings with controlled particle size and pore structure.Chemistry of Materials, 2012, 24(20): 3828–3838 https://doi.org/10.1021/cm301081w
29
S, Algorabi S, Akmaz S N Koc . The investigation of hydrogenation behavior of furfural over sol-gel prepared Cu/ZrO2 catalysts.Journal of Sol-Gel Science and Technology, 2020, 96(1): 47–55 https://doi.org/10.1007/s10971-020-05352-6
30
H, Jiang H, Zhang Q, Kang et al.. Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation.Scientific Reports, 2019, 9(1): 15681 https://doi.org/10.1038/s41598-019-51979-z
pmid: 31666571
31
L, Zhu H, Zhang W, Hu et al.. Nickel hydroxide–cobalt hydroxide nanoparticle supported ruthenium–nickel–cobalt islands as an efficient nanocatalyst for the hydrogenation reaction.ChemCatChem, 2018, 10(9): 1998–2002 https://doi.org/10.1002/cctc.201701847
32
S, Han W T, Chen Z T, Gao , et al.. Mechanochemical-assisted synthesis of nitrogen-doped carbon supported cobalt catalysts for efficient and selective hydrogenation of furfural. Catalysis Letters, 2022, in press
33
J, Chu L, Sun D J, Huang et al.. Hierarchical nitrogen-doped porous carbon-supported cobalt nanoparticles for promoting catalytic transfer hydrogenation of furfural.Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1327–1336 https://doi.org/10.11862/CJIC.2022.132
34
A, Koji J, Iqbal R H, Yu et al.. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals.Frontiers of Materials Science, 2011, 5(3): 311–321 https://doi.org/10.1007/s11706-011-0143-3
35
X, Han J, Lv S, Huang , et al.. Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer–Trposch synthesis. Nano Research, 2023, in press
36
K, Chen J, Yu B, Liu et al.. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst.Journal of Catalysis, 2019, 372: 163–173 https://doi.org/10.1016/j.jcat.2019.02.035
37
Y, Shi Y, Zhou Y, Lou et al.. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations.Advanced Science, 2022, 9(24): 2201520 https://doi.org/10.1002/advs.202201520
pmid: 35808964
38
I, Ro J, Resasco P Christopher . Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts.ACS Catalysis, 2018, 8(8): 7368–7387 https://doi.org/10.1021/acscatal.8b02071
39
L, Zhu H, Zhang L, Zhong et al.. RuNiCo-based nanocatalysts with different nanostructures for naphthalene selective hydrogenation.Fuel, 2018, 216: 208–217 https://doi.org/10.1016/j.fuel.2017.12.023
A, Figueroba G, Kovacs A, Bruix et al.. Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria.Catalysis Science & Technology, 2016, 6(18): 6806–6813 https://doi.org/10.1039/C6CY00294C
42
F A, Westerhaus R V, Jagadeesh G, Wienhöfer et al.. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes.Nature Chemistry, 2013, 5(6): 537–543 https://doi.org/10.1038/nchem.1645
pmid: 23695637
43
A, Sakamaki H, Ogihara M, Yoshida-Hirahara et al.. Precursor accumulation on nanocarbons for the synthesis of LaCoO3 nanoparticles as electrocatalysts for oxygen evolution reaction.RSC Advances, 2021, 11(33): 20313–20321 https://doi.org/10.1039/D1RA03762E
pmid: 35479911
44
B, Wang C, Tang H F, Wang et al.. A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution.Advanced Materials, 2019, 31(4): 1805658 https://doi.org/10.1002/adma.201805658
pmid: 30515883
45
A, Azor M L, Ruiz-Gonzalez F, Gonell et al.. Nickel-doped sodium cobaltite 2D nanomaterials: synthesis and electrocatalytic properties.Chemistry of Materials, 2018, 30(15): 4986–4994 https://doi.org/10.1021/acs.chemmater.8b01146
46
Z, Xu Q, Long Y, Deng et al.. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires.Applied Surface Science, 2018, 441: 955–964 https://doi.org/10.1016/j.apsusc.2018.02.098
47
X, Chen L, Zhang B, Zhang et al.. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.Scientific Reports, 2016, 6(1): 28558 https://doi.org/10.1038/srep28558
pmid: 27328834
48
X, Liu B, Zhang B, Fei et al.. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.Faraday Discussions, 2017, 202: 79–98 https://doi.org/10.1039/C7FD00041C
pmid: 28650491
49
G, Ji Y, Duan S, Zhang et al.. Selective semihydrogenation of alkynes catalyzed by Pd nanoparticles immobilized on heteroatom-doped hierarchical porous carbon derived from bamboo shoots.ChemSusChem, 2017, 10(17): 3427–3434 https://doi.org/10.1002/cssc.201701127
pmid: 28762664
50
T, Song Y, Duan X, Chen et al.. Switchable access to amines and imines from reductive coupling of nitroarenes with alcohols catalyzed by biomass-derived cobalt nanoparticles.Catalysts, 2019, 9(2): 116 https://doi.org/10.3390/catal9020116
51
T, Song P, Ren Y, Duan et al.. Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes.Green Chemistry, 2018, 20(20): 4629–4637 https://doi.org/10.1039/C8GC01374H
52
Q, Li X, Chen Y Yang . Biomass-derived nitrogen-doped porous carbon for highly efficient ambient electro-synthesis of NH3.Catalysts, 2020, 10(3): 353 https://doi.org/10.3390/catal10030353
53
S, Zhou H Qi . A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co3O4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation.Nanoscale, 2020, 12(33): 17373–17384 https://doi.org/10.1039/D0NR04431H
pmid: 32789386
54
S I, Tsyganova A N, Mel’nikov I V, Korol’kova et al.. Synthesis of porous carbon materials from birch sawdust modified with ZnCl2.Russian Journal of Applied Chemistry, 2007, 80(6): 920–923 https://doi.org/10.1134/S1070427207060134
55
X, Zhao R, Long D, Liu et al.. Pd–Ag alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 9390–9394 https://doi.org/10.1039/C5TA00777A
56
Z, Chen J, Chen Y Li . Metal-organic-framework-based catalysts for hydrogenation reactions.Chinese Journal of Catalysis, 2017, 38(7): 1108–1126 https://doi.org/10.1016/S1872-2067(17)62852-3
57
Y, Ke W, Hu H, Fang et al.. Preparation, heat-treatment and oxygen reduction performance of porous carbon with high nitrogen content.Journal of Wuhan Institute of Technology, 2021, 43(6): 626–631 https://doi.org/10.19843/j.cnki.CN42-1779/TQ.202011019
58
D, Liu X, Chen G, Xu et al.. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water.Scientific Reports, 2016, 6(1): 21365 https://doi.org/10.1038/srep21365
pmid: 26912370
59
X, Wang Y, Tang P, Shi et al.. Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries.Chemical Engineering Journal, 2018, 334: 1642–1649 https://doi.org/10.1016/j.cej.2017.11.155
60
X C, Guo B, Yu Z Z, Wang et al.. Selective hydrogenation of furfural to furfuryl alcohol over Cu/CeCoOx in aqueous phase.Molecular Catalysis, 2022, 529: 112553 https://doi.org/10.1016/j.mcat.2022.112553