1. School of Material and Chemical Engineering, Chuzhou University, Chuzhou 239000, China 2. Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China 3. School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
Tin dioxide nanotubes with N-doped carbon layer (SnO2/N-C NTs) were synthesized through a MoO3 nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO2/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g−1 at 0.1 A·g−1 and a high capacity of 1369.3 mAh·g−1 over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li+ and electrons, and alleviates the volume change of the anode to a certain extent.
Y, Li W, Yang H L, Liu et al.. Template-mediated strategy to regulate hierarchically nitrogen–sulfur co-doped porous carbon as superior anode material for lithium capacity.Frontiers of Materials Science, 2022, 16(1): 220584 https://doi.org/10.1007/s11706-022-0584-x
2
X, Yang Y N, Huang M J, Wang et al.. Double hollow Zn2SnO4/SnO2@N-doped carbon nanocubes as anode material for high-performance Li-ion batteries.Chemical Physics Letters, 2023, 813: 140285 https://doi.org/10.1016/j.cplett.2022.140285
3
Z P, Wu Y L, Wang X B, Liu et al.. Carbon-nanomaterial-based flexible batteries for wearable electronics.Advanced Materials, 2019, 31(9): 1800716 https://doi.org/10.1002/adma.201800716
4
J H, Wang J D, Zheng L P, Gao et al.. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage.Frontiers of Materials Science, 2023, 17(3): 230654 https://doi.org/10.1007/s11706-023-0654-8
5
J Z, Man K, Liu Y H, Du et al.. Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries.Materials Chemistry and Physics, 2020, 256: 123669 https://doi.org/10.1016/j.matchemphys.2020.123669
6
R P, Liu N, Zhang X Y, Wang et al.. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries.Frontiers of Materials Science, 2019, 13(2): 186–192 https://doi.org/10.1007/s11706-019-0463-2
7
Y, Zhao L A, Yang C L Ma . One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage.Frontiers of Materials Science, 2020, 14(2): 145–154 https://doi.org/10.1007/s11706-020-0504-x
8
Z M, Wang F M, Zeng S L, Zhao et al.. In-situ fabricate highly ordered 3D Cervantite@TiO2 nanoarrays integrated electrode as additive-free anode for lithium/sodium-ion batteries.Journal of Power Sources, 2022, 548: 232054 https://doi.org/10.1016/j.jpowsour.2022.232054
9
K, Varghese D S, Baji S, Nair et al.. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications.Frontiers of Materials Science, 2022, 16(2): 220601 https://doi.org/10.1007/s11706-022-0601-0
10
X L, Sun W H, Xie F Luo . Nanoarchitectonics of multilayered NiO submicron flakes for ultrafast and stable lithium storage.Journal of Alloys and Compounds, 2023, 936: 168259 https://doi.org/10.1016/j.jallcom.2022.168259
11
J, Singh S, Lee A, Tomar et al.. Surfactant-mediated synthesis of novel mesoporous hollow CuO nanotubes as an anode material for lithium-ion battery application.ChemistrySelect, 2023, 8(1): e202203755 https://doi.org/10.1002/slct.202203755
12
J Z, Man K, Liu Y H, Du et al.. Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries.Materials Chemistry and Physics, 2020, 256: 123669 https://doi.org/10.1016/j.matchemphys.2020.123669
13
F L, Zhang X L, Teng W K, Shi et al.. SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries.Applied Surface Science, 2020, 527: 146910 https://doi.org/10.1016/j.apsusc.2020.146910
14
S, Fang D, Bresser S Passerini . Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries.Advanced Energy Materials, 2020, 10(1): 1902485 https://doi.org/10.1002/aenm.201902485
15
W Q, Yao S B, Wu L, Zhan et al.. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries.Chemical Engineering Journal, 2019, 361: 329–341 https://doi.org/10.1016/j.cej.2018.08.217
16
J W, Li W L, Yao F C, Zhang et al.. Porous SnO2 microsphere and its carbon nanotube hybrids: controllable preparation, structures and electrochemical performances as anode materials.Electrochimica Acta, 2021, 388: 138582 https://doi.org/10.1016/j.electacta.2021.138582
17
S, Xu W, Yu W, Li et al.. High compact mechanical adhesion enables interfacial lithium-ion storage in cobalt phthalocyanine decorated tin oxide nanotubes.Journal of Electroanalytical Chemistry, 2022, 922: 116792 https://doi.org/10.1016/j.jelechem.2022.116792
18
Q S, Dai C P, Gu Y Y, Xu et al.. Self-sacrificing template method to controllable synthesize hollow SnO2@C nanoboxes for lithium-ion battery anode.Journal of Electroanalytical Chemistry, 2021, 898: 115653 https://doi.org/10.1016/j.jelechem.2021.115653
19
J Y, Wang Y, Cui D Wang . Design of hollow nanostructures for energy storage, conversion and production.Advanced Materials, 2019, 31(38): 1801993 https://doi.org/10.1002/adma.201801993
20
J M, Luo Y G, Sun S J, Guo et al.. Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries.Materials Chemistry Frontiers, 2020, 4(8): 2283–2306 https://doi.org/10.1039/D0QM00313A
21
M N, Fan Z H, Yang Z H, Lin et al.. Facile synthesis of uniform N-doped carbon-coated TiO2 hollow spheres with enhanced lithium storage performance.Nanoscale, 2021, 13(4): 2368–2372 https://doi.org/10.1039/D0NR07659G
22
L, Wei Q T, Yu X Y, Yang et al.. A facile assembly of SnO2 nanoparticles and moderately exfoliated graphite for advanced lithium-ion battery anode.Electrochimica Acta, 2022, 432: 141210 https://doi.org/10.1016/j.electacta.2022.141210
23
Z Y, Wen C P, Gu Y J, Yin et al.. Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries.Applied Surface Science, 2021, 568: 150969 https://doi.org/10.1016/j.apsusc.2021.150969
24
Y, Liu C, Hu L, Chen et al.. Confining ultrahigh oxygen vacancy SnO2 nanocrystals into nitrogen-doped carbon for enhanced Li-ion storage kinetics and reversibility.Journal of Energy Chemistry, 2022, 69: 450–455 https://doi.org/10.1016/j.jechem.2022.01.021
25
S F, Wang S Y, Wang G, Wang et al.. Ion removal performance and enhanced cyclic stability of SnO2/CNT composite electrode in hybrid capacitive deionization.Materials Today. Communications, 2020, 23: 100904 https://doi.org/10.1016/j.mtcomm.2020.100904
26
A, Henriques A R, Baboukani B, Jafarizadeh et al.. Nano-confined tin oxide in carbon nanotube electrodes via electrostatic spray deposition for lithium-ion batteries.Materials, 2022, 15(24): 9086 https://doi.org/10.3390/ma15249086
27
H W, Zhao X L, Zeng T, Zheng et al.. Three-dimensional porous aerogel assembly from ultrathin rGO@SnO2 nanosheets for advanced lithium-ion batteries.Composites Part B: Engineering, 2022, 231: 109591 https://doi.org/10.1016/j.compositesb.2021.109591
28
Y Y, Cheng H, Xie F L, Yu et al.. Facile fabrication of three-dimensional porous carbon embedded with SnO2 nanoparticles as a high-performance anode for lithium-ion battery.Ionics, 2021, 27(10): 4143–4151 https://doi.org/10.1007/s11581-021-04177-9
29
Y B, Xi D J, Yang H M, Lou et al.. Designing the effective microstructure of lignin-based porous carbon substrate to inhibit the capacity decline for SnO2 anode.Industrial Crops and Products, 2021, 161: 113179 https://doi.org/10.1016/j.indcrop.2020.113179
30
D D, Liu Z Y, Wei L M, Liu et al.. Ultrafine SnO2 anchored in ordered mesoporous carbon framework for lithium storage with high capacity and rate capability.Chemical Engineering Journal, 2021, 406: 126710 https://doi.org/10.1016/j.cej.2020.126710
31
Z X, Xu W B, Yue X, Yuan et al.. Exceptional anodic performance of Sb-doped SnO2 nanoparticles on electrochemically exfoliated graphene for lithium-ion batteries.Journal of Alloys and Compounds, 2019, 795: 168–176 https://doi.org/10.1016/j.jallcom.2019.05.009
32
H Y, Zhang L Q, Li Z P, Li et al.. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries.Applied Surface Science, 2018, 442: 65–70 https://doi.org/10.1016/j.apsusc.2018.01.184
33
K, Brijesh S, Vinayraj P C, Dhanush et al.. ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity lithium ion battery.Electrochimica Acta, 2020, 354: 136676 https://doi.org/10.1016/j.electacta.2020.136676
34
A, Raza F, Ghani J C, Lim et al.. Eco-friendly prepared mesoporous carbon encapsulated SnO2 nanoparticles for high-reversible lithium-ion battery anodes.Microporous and Mesoporous Materials, 2021, 314: 110853 https://doi.org/10.1016/j.micromeso.2020.110853
35
J, Wang F, Fang T, Yuan et al.. Three-dimensional graphene/single-walled carbon nanotube aerogel anchored with SnO2 nanoparticles for high performance lithium storage.ACS Applied Materials & Interfaces, 2017, 9(4): 3544–3553 https://doi.org/10.1021/acsami.6b10807
36
J K, Meng W W, Wang Q C, Wang et al.. Graphene supported ultrafine tin oxide nanoparticles enable conversion reaction dominated mechanism for sodium-ion batteries.Electrochimica Acta, 2019, 303: 32–39 https://doi.org/10.1016/j.electacta.2019.02.072
37
D X, Yang H Y, Ren D P, Wu et al.. Bi-functional nitrogen-doped carbon protective layer on three-dimensional RGO/SnO2 composites with enhanced electron transport and structural stability for high-performance lithium-ion batteries.Journal of Colloid and Interface Science, 2019, 542: 81–90 https://doi.org/10.1016/j.jcis.2019.01.126
38
J, Zhang H, Ren J Y, Wang et al.. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(45): 17673–17677 https://doi.org/10.1039/C6TA07717J
39
B R, Liang J J, Wang S Y, Zhang et al.. Hybrid of Co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties.Applied Surface Science, 2020, 533: 147447 https://doi.org/10.1016/j.apsusc.2020.147447
40
F H, Tian Y Q, Cheng Y J, Zhang et al.. SnO2@C nanowires as high-performance anodic materials for lithium-ion batteries.Materials Letters, 2021, 284: 129019 https://doi.org/10.1016/j.matlet.2020.129019
41
R, Li C, Miao L M, Yu et al.. Novel self-assembled SnO2@SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries.Materials Letters, 2020, 272: 127851 https://doi.org/10.1016/j.matlet.2020.127851
42
Z P, Zhao H, Su S H, Li et al.. Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries.Journal of Alloys and Compounds, 2020, 838: 155394 https://doi.org/10.1016/j.jallcom.2020.155394
43
X Q, Liu S L, Zhu Y Q, Liang et al.. 3D N-doped mesoporous carbon/SnO2 with polypyrrole coating layer as high-performance anode material for Li-ion batteries.Journal of Alloys and Compounds, 2022, 892: 162083 https://doi.org/10.1016/j.jallcom.2021.162083
44
W R, Li X Q, Deng Y F, Feng et al.. Synthesis of SnO2@MnO2@graphite nanosheet with high reversibility and stable structure as a high-performance anode material for lithium-ion batteries.Ceramics International, 2021, 47(23): 33405–33412 https://doi.org/10.1016/j.ceramint.2021.08.247
45
Y, Hong W F, Mao Q Q, Hu et al.. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes.Journal of Power Sources, 2019, 428: 44–52 https://doi.org/10.1016/j.jpowsour.2019.04.093
46
X G, Liu J M, Guo T, Liu et al.. Mechanical simulation informed rational design of a soft-and-hard double-jacketed SnO2 flexible electrode for high performance lithium-ion battery.Energy Storage Materials, 2021, 35: 520–529 https://doi.org/10.1016/j.ensm.2020.09.012
47
W L, Wei P C, Du D, Liu et al.. Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries.Journal of Colloid and Interface Science, 2017, 503: 205–213 https://doi.org/10.1016/j.jcis.2017.05.017
48
Z Q, Hu X F, Xu X F, Wang et al.. SnO2@rice husk cellulose composite as an anode for superior lithium ion batteries.New Journal of Chemistry, 2019, 43(22): 8755–8760 https://doi.org/10.1039/C9NJ01435G
49
Y, Wang W B, Guo Y Q, Yang et al.. Rational design of SnO2@C@MnO2 hierarchical hollow hybrid nanospheres for a Li-ion battery anode with enhanced performances.Electrochimica Acta, 2018, 262: 1–8 https://doi.org/10.1016/j.electacta.2017.12.181
50
D, Seok W H, Shin S W, Kang et al.. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility.Journal of Alloys and Compounds, 2021, 870: 159267 https://doi.org/10.1016/j.jallcom.2021.159267
51
Z J, Yang X Y, Qin K, Lin et al.. Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion.Carbon, 2022, 187: 321–329 https://doi.org/10.1016/j.carbon.2021.10.065