Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2023, Vol. 17 Issue (4): 230663   https://doi.org/10.1007/s11706-023-0663-7
  本期目录
SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes
Junhai Wang1, Jiandong Zheng1(), Liping Gao1, Chunyu Meng2, Jiarui Huang2(), Sang Woo Joo3()
1. School of Material and Chemical Engineering, Chuzhou University, Chuzhou 239000, China
2. Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
3. School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
 全文: PDF(8613 KB)   HTML
Abstract

Tin dioxide nanotubes with N-doped carbon layer (SnO2/N-C NTs) were synthesized through a MoO3 nanorod-based sacrificial template method, dopamine polymerization and calcination process. Applied to the Li-ion battery, SnO2/N-C NTs exhibited excellent electrochemical properties, with a first discharge capacity of 1722.3 mAh·g−1 at 0.1 A·g−1 and a high capacity of 1369.3 mAh·g−1 over 100 cycles. The superior electrochemical performance is ascribed to the N-doped carbon layer and tubular structure, which effectively improves the electrical conductivity of the composites, accelerates the migration of Li+ and electrons, and alleviates the volume change of the anode to a certain extent.

Key wordsSnO2    nanotubes    N-doped carbon    anode    Li-ion battery
收稿日期: 2023-05-30      出版日期: 2023-10-23
Corresponding Author(s): Jiandong Zheng,Jiarui Huang,Sang Woo Joo   
 引用本文:   
. [J]. Frontiers of Materials Science, 2023, 17(4): 230663.
Junhai Wang, Jiandong Zheng, Liping Gao, Chunyu Meng, Jiarui Huang, Sang Woo Joo. SnO2 nanotubes with N-doped carbon coating for advanced Li-ion battery anodes. Front. Mater. Sci., 2023, 17(4): 230663.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-023-0663-7
https://academic.hep.com.cn/foms/CN/Y2023/V17/I4/230663
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Y, Li W, Yang H L, Liu et al.. Template-mediated strategy to regulate hierarchically nitrogen–sulfur co-doped porous carbon as superior anode material for lithium capacity.Frontiers of Materials Science, 2022, 16(1): 220584
https://doi.org/10.1007/s11706-022-0584-x
2 X, Yang Y N, Huang M J, Wang et al.. Double hollow Zn2SnO4/SnO2@N-doped carbon nanocubes as anode material for high-performance Li-ion batteries.Chemical Physics Letters, 2023, 813: 140285
https://doi.org/10.1016/j.cplett.2022.140285
3 Z P, Wu Y L, Wang X B, Liu et al.. Carbon-nanomaterial-based flexible batteries for wearable electronics.Advanced Materials, 2019, 31(9): 1800716
https://doi.org/10.1002/adma.201800716
4 J H, Wang J D, Zheng L P, Gao et al.. Nitrogen-doped carbon-coated hollow SnS2/NiS microflowers for high-performance lithium storage.Frontiers of Materials Science, 2023, 17(3): 230654
https://doi.org/10.1007/s11706-023-0654-8
5 J Z, Man K, Liu Y H, Du et al.. Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries.Materials Chemistry and Physics, 2020, 256: 123669
https://doi.org/10.1016/j.matchemphys.2020.123669
6 R P, Liu N, Zhang X Y, Wang et al.. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries.Frontiers of Materials Science, 2019, 13(2): 186–192
https://doi.org/10.1007/s11706-019-0463-2
7 Y, Zhao L A, Yang C L Ma . One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage.Frontiers of Materials Science, 2020, 14(2): 145–154
https://doi.org/10.1007/s11706-020-0504-x
8 Z M, Wang F M, Zeng S L, Zhao et al.. In-situ fabricate highly ordered 3D Cervantite@TiO2 nanoarrays integrated electrode as additive-free anode for lithium/sodium-ion batteries.Journal of Power Sources, 2022, 548: 232054
https://doi.org/10.1016/j.jpowsour.2022.232054
9 K, Varghese D S, Baji S, Nair et al.. Conducting polymer PEDOT:PSS coated Co3O4 nanoparticles as the anode for sodium-ion battery applications.Frontiers of Materials Science, 2022, 16(2): 220601
https://doi.org/10.1007/s11706-022-0601-0
10 X L, Sun W H, Xie F Luo . Nanoarchitectonics of multilayered NiO submicron flakes for ultrafast and stable lithium storage.Journal of Alloys and Compounds, 2023, 936: 168259
https://doi.org/10.1016/j.jallcom.2022.168259
11 J, Singh S, Lee A, Tomar et al.. Surfactant-mediated synthesis of novel mesoporous hollow CuO nanotubes as an anode material for lithium-ion battery application.ChemistrySelect, 2023, 8(1): e202203755
https://doi.org/10.1002/slct.202203755
12 J Z, Man K, Liu Y H, Du et al.. Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries.Materials Chemistry and Physics, 2020, 256: 123669
https://doi.org/10.1016/j.matchemphys.2020.123669
13 F L, Zhang X L, Teng W K, Shi et al.. SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries.Applied Surface Science, 2020, 527: 146910
https://doi.org/10.1016/j.apsusc.2020.146910
14 S, Fang D, Bresser S Passerini . Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries.Advanced Energy Materials, 2020, 10(1): 1902485
https://doi.org/10.1002/aenm.201902485
15 W Q, Yao S B, Wu L, Zhan et al.. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries.Chemical Engineering Journal, 2019, 361: 329–341
https://doi.org/10.1016/j.cej.2018.08.217
16 J W, Li W L, Yao F C, Zhang et al.. Porous SnO2 microsphere and its carbon nanotube hybrids: controllable preparation, structures and electrochemical performances as anode materials.Electrochimica Acta, 2021, 388: 138582
https://doi.org/10.1016/j.electacta.2021.138582
17 S, Xu W, Yu W, Li et al.. High compact mechanical adhesion enables interfacial lithium-ion storage in cobalt phthalocyanine decorated tin oxide nanotubes.Journal of Electroanalytical Chemistry, 2022, 922: 116792
https://doi.org/10.1016/j.jelechem.2022.116792
18 Q S, Dai C P, Gu Y Y, Xu et al.. Self-sacrificing template method to controllable synthesize hollow SnO2@C nanoboxes for lithium-ion battery anode.Journal of Electroanalytical Chemistry, 2021, 898: 115653
https://doi.org/10.1016/j.jelechem.2021.115653
19 J Y, Wang Y, Cui D Wang . Design of hollow nanostructures for energy storage, conversion and production.Advanced Materials, 2019, 31(38): 1801993
https://doi.org/10.1002/adma.201801993
20 J M, Luo Y G, Sun S J, Guo et al.. Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries.Materials Chemistry Frontiers, 2020, 4(8): 2283–2306
https://doi.org/10.1039/D0QM00313A
21 M N, Fan Z H, Yang Z H, Lin et al.. Facile synthesis of uniform N-doped carbon-coated TiO2 hollow spheres with enhanced lithium storage performance.Nanoscale, 2021, 13(4): 2368–2372
https://doi.org/10.1039/D0NR07659G
22 L, Wei Q T, Yu X Y, Yang et al.. A facile assembly of SnO2 nanoparticles and moderately exfoliated graphite for advanced lithium-ion battery anode.Electrochimica Acta, 2022, 432: 141210
https://doi.org/10.1016/j.electacta.2022.141210
23 Z Y, Wen C P, Gu Y J, Yin et al.. Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries.Applied Surface Science, 2021, 568: 150969
https://doi.org/10.1016/j.apsusc.2021.150969
24 Y, Liu C, Hu L, Chen et al.. Confining ultrahigh oxygen vacancy SnO2 nanocrystals into nitrogen-doped carbon for enhanced Li-ion storage kinetics and reversibility.Journal of Energy Chemistry, 2022, 69: 450–455
https://doi.org/10.1016/j.jechem.2022.01.021
25 S F, Wang S Y, Wang G, Wang et al.. Ion removal performance and enhanced cyclic stability of SnO2/CNT composite electrode in hybrid capacitive deionization.Materials Today. Communications, 2020, 23: 100904
https://doi.org/10.1016/j.mtcomm.2020.100904
26 A, Henriques A R, Baboukani B, Jafarizadeh et al.. Nano-confined tin oxide in carbon nanotube electrodes via electrostatic spray deposition for lithium-ion batteries.Materials, 2022, 15(24): 9086
https://doi.org/10.3390/ma15249086
27 H W, Zhao X L, Zeng T, Zheng et al.. Three-dimensional porous aerogel assembly from ultrathin rGO@SnO2 nanosheets for advanced lithium-ion batteries.Composites Part B: Engineering, 2022, 231: 109591
https://doi.org/10.1016/j.compositesb.2021.109591
28 Y Y, Cheng H, Xie F L, Yu et al.. Facile fabrication of three-dimensional porous carbon embedded with SnO2 nanoparticles as a high-performance anode for lithium-ion battery.Ionics, 2021, 27(10): 4143–4151
https://doi.org/10.1007/s11581-021-04177-9
29 Y B, Xi D J, Yang H M, Lou et al.. Designing the effective microstructure of lignin-based porous carbon substrate to inhibit the capacity decline for SnO2 anode.Industrial Crops and Products, 2021, 161: 113179
https://doi.org/10.1016/j.indcrop.2020.113179
30 D D, Liu Z Y, Wei L M, Liu et al.. Ultrafine SnO2 anchored in ordered mesoporous carbon framework for lithium storage with high capacity and rate capability.Chemical Engineering Journal, 2021, 406: 126710
https://doi.org/10.1016/j.cej.2020.126710
31 Z X, Xu W B, Yue X, Yuan et al.. Exceptional anodic performance of Sb-doped SnO2 nanoparticles on electrochemically exfoliated graphene for lithium-ion batteries.Journal of Alloys and Compounds, 2019, 795: 168–176
https://doi.org/10.1016/j.jallcom.2019.05.009
32 H Y, Zhang L Q, Li Z P, Li et al.. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries.Applied Surface Science, 2018, 442: 65–70
https://doi.org/10.1016/j.apsusc.2018.01.184
33 K, Brijesh S, Vinayraj P C, Dhanush et al.. ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity lithium ion battery.Electrochimica Acta, 2020, 354: 136676
https://doi.org/10.1016/j.electacta.2020.136676
34 A, Raza F, Ghani J C, Lim et al.. Eco-friendly prepared mesoporous carbon encapsulated SnO2 nanoparticles for high-reversible lithium-ion battery anodes.Microporous and Mesoporous Materials, 2021, 314: 110853
https://doi.org/10.1016/j.micromeso.2020.110853
35 J, Wang F, Fang T, Yuan et al.. Three-dimensional graphene/single-walled carbon nanotube aerogel anchored with SnO2 nanoparticles for high performance lithium storage.ACS Applied Materials & Interfaces, 2017, 9(4): 3544–3553
https://doi.org/10.1021/acsami.6b10807
36 J K, Meng W W, Wang Q C, Wang et al.. Graphene supported ultrafine tin oxide nanoparticles enable conversion reaction dominated mechanism for sodium-ion batteries.Electrochimica Acta, 2019, 303: 32–39
https://doi.org/10.1016/j.electacta.2019.02.072
37 D X, Yang H Y, Ren D P, Wu et al.. Bi-functional nitrogen-doped carbon protective layer on three-dimensional RGO/SnO2 composites with enhanced electron transport and structural stability for high-performance lithium-ion batteries.Journal of Colloid and Interface Science, 2019, 542: 81–90
https://doi.org/10.1016/j.jcis.2019.01.126
38 J, Zhang H, Ren J Y, Wang et al.. Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(45): 17673–17677
https://doi.org/10.1039/C6TA07717J
39 B R, Liang J J, Wang S Y, Zhang et al.. Hybrid of Co-doped SnO2 and graphene sheets as anode material with enhanced lithium storage properties.Applied Surface Science, 2020, 533: 147447
https://doi.org/10.1016/j.apsusc.2020.147447
40 F H, Tian Y Q, Cheng Y J, Zhang et al.. SnO2@C nanowires as high-performance anodic materials for lithium-ion batteries.Materials Letters, 2021, 284: 129019
https://doi.org/10.1016/j.matlet.2020.129019
41 R, Li C, Miao L M, Yu et al.. Novel self-assembled SnO2@SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries.Materials Letters, 2020, 272: 127851
https://doi.org/10.1016/j.matlet.2020.127851
42 Z P, Zhao H, Su S H, Li et al.. Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries.Journal of Alloys and Compounds, 2020, 838: 155394
https://doi.org/10.1016/j.jallcom.2020.155394
43 X Q, Liu S L, Zhu Y Q, Liang et al.. 3D N-doped mesoporous carbon/SnO2 with polypyrrole coating layer as high-performance anode material for Li-ion batteries.Journal of Alloys and Compounds, 2022, 892: 162083
https://doi.org/10.1016/j.jallcom.2021.162083
44 W R, Li X Q, Deng Y F, Feng et al.. Synthesis of SnO2@MnO2@graphite nanosheet with high reversibility and stable structure as a high-performance anode material for lithium-ion batteries.Ceramics International, 2021, 47(23): 33405–33412
https://doi.org/10.1016/j.ceramint.2021.08.247
45 Y, Hong W F, Mao Q Q, Hu et al.. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes.Journal of Power Sources, 2019, 428: 44–52
https://doi.org/10.1016/j.jpowsour.2019.04.093
46 X G, Liu J M, Guo T, Liu et al.. Mechanical simulation informed rational design of a soft-and-hard double-jacketed SnO2 flexible electrode for high performance lithium-ion battery.Energy Storage Materials, 2021, 35: 520–529
https://doi.org/10.1016/j.ensm.2020.09.012
47 W L, Wei P C, Du D, Liu et al.. Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries.Journal of Colloid and Interface Science, 2017, 503: 205–213
https://doi.org/10.1016/j.jcis.2017.05.017
48 Z Q, Hu X F, Xu X F, Wang et al.. SnO2@rice husk cellulose composite as an anode for superior lithium ion batteries.New Journal of Chemistry, 2019, 43(22): 8755–8760
https://doi.org/10.1039/C9NJ01435G
49 Y, Wang W B, Guo Y Q, Yang et al.. Rational design of SnO2@C@MnO2 hierarchical hollow hybrid nanospheres for a Li-ion battery anode with enhanced performances.Electrochimica Acta, 2018, 262: 1–8
https://doi.org/10.1016/j.electacta.2017.12.181
50 D, Seok W H, Shin S W, Kang et al.. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility.Journal of Alloys and Compounds, 2021, 870: 159267
https://doi.org/10.1016/j.jallcom.2021.159267
51 Z J, Yang X Y, Qin K, Lin et al.. Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion.Carbon, 2022, 187: 321–329
https://doi.org/10.1016/j.carbon.2021.10.065
[1] FMS-23663-OF-Wjh_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed