Application of Ag–Cu–Ti active metal composite filler in ceramic joining: a review
Yuhang Li1, Jun WANG2, Ziyan SHEN2, Hangli Qian1, Wanliang Zhang1, Kaiyu Zhang1, Danqing Ying1, Qihang Zhou1, Chengshuang Zhou1, Lin Zhang1()
1. Institute of Material Forming and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2. Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
As a structural and functional material with excellent properties, ceramics play an extremely important role in a wide range of industries, including life and production. To expand the range of applications for ceramic materials, ceramics are often joined to metals and then used. Among the physical and chemical joining methods of ceramics to metals, the AMB method is efficient and simple, suitable for industrial applications, and has been a hot topic of research. However, due to the problems of residual stresses caused by the large difference in thermal expansion coefficients between ceramic and metal brazing, composite fillers have become a very worthwhile solution by regulating the physical properties of the brazing material and improving the weld structure. This review describes the wetting principle and application of Ag‒Cu‒Ti active metal filler in the field of ceramic joining, with emphasis on the current stage of composite filler, and discusses the influence on the former brazing properties and organization after the introduction of dissimilar materials.
M, Xu Y R, Girish K P, Rakesh et al.. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications.Materials Today: Communications, 2021, 28: 102533 https://doi.org/10.1016/j.mtcomm.2021.102533
2
Otitoju T, Ayode Okoye P, Ugochukwu G, Chen et al.. Advanced ceramic components: materials, fabrication, and applications.Journal of Industrial and Engineering Chemistry, 2020, 85: 34–65 https://doi.org/10.1016/j.jiec.2020.02.002
3
Z, Xiao S, Yu Y, Li et al.. Materials development and potential applications of transparent ceramics: a review.Materials Science and Engineering R: Reports, 2020, 139: 100518 https://doi.org/10.1016/j.mser.2019.100518
4
Q, An J, Chen W, Ming et al.. Machining of SiC ceramic matrix composites: a review.Chinese Journal of Aeronautics, 2021, 34(4): 540–567 https://doi.org/10.1016/j.cja.2020.08.001
5
D, Li Y, Lin Q, Yuan et al.. A novel lead-free Na0.5Bi0.5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications.Journal of Materiomics, 2020, 6(4): 743–750 https://doi.org/10.1016/j.jmat.2020.06.005
6
H, Zhang T, Wei Q, Zhang et al.. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(47): 16648–16667 https://doi.org/10.1039/D0TC04381H
7
X, Wang X, Gao Z, Zhang et al.. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review.Journal of the European Ceramic Society, 2021, 41(9): 4671–4688 https://doi.org/10.1016/j.jeurceramsoc.2021.03.051
8
Z, Raszewski D, Brzakalski L, Derpenski et al.. Aspects and principles of material connections in restorative dentistry — a comprehensive review.Materials, 2022, 15(20): 7131 https://doi.org/10.3390/ma15207131
9
N, Deng J, Zhao L, Yang et al.. Effects of brazing technology on hermeticity of alumina ceramic–metal joint used in nuclear power plants.Frontiers in Materials, 2021, 7: 580938 https://doi.org/10.3389/fmats.2020.580938
10
X, Zeng E, Li G, Xia et al.. Silica-based ceramics toward electromagnetic microwave absorption.Journal of the European Ceramic Society, 2021, 41(15): 7381–7403 https://doi.org/10.1016/j.jeurceramsoc.2021.08.009
T, Arumugham N J, Kaleekkal S, Gopal et al.. Recent developments in porous ceramic membranes for wastewater treatment and desalination: a review.Journal of Environmental Management, 2021, 293: 112925 https://doi.org/10.1016/j.jenvman.2021.112925
13
M I, Sayyed J F M, Jecong F C, Hila et al.. Radiation shielding characteristics of selected ceramics using the EPICS2017 library.Ceramics International, 2021, 47(9): 13181–13186 https://doi.org/10.1016/j.ceramint.2021.01.183
14
C, Chen A, Han M, Ye et al.. A new thermal insulation ceramic pigment: Ce-doped Y3Al5O12 compounds combined with high near-infrared reflectance and low thermal conductivity.Journal of Alloys and Compounds, 2021, 886: 161257 https://doi.org/10.1016/j.jallcom.2021.161257
15
F A, Mir N Z, Khan S Parvez . Recent advances and development in joining ceramics to metals.Materials Today: Proceedings, 2021, 46: 6570–6575 https://doi.org/10.1016/j.matpr.2021.04.047
16
B Ahn . Recent advances in brazing fillers for joining of dissimilar materials.Metals, 2021, 11(7): 1037 https://doi.org/10.3390/met11071037
17
S, Mishra A, Sharma D H, Jung et al.. Recent advances in active metal brazing of ceramics and process.Metals and Materials International, 2020, 26(8): 1087–1098 https://doi.org/10.1007/s12540-019-00536-4
18
L, Zhao X, Li J, Hou et al.. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag–Cu eutectic and Cu interlayer.Applied Surface Science, 2012, 258(24): 10053–10057 https://doi.org/10.1016/j.apsusc.2012.06.073
19
M M, Singh G, Vijaya M S, Krupashankara et al.. Deposition and characterization of aluminium thin film coatings using DC magnetron sputtering process.Materials Today: Proceedings, 2018, 5(1): 2696–2704 https://doi.org/10.1016/j.matpr.2018.01.050
20
L, Wu L, Meng Y, Wang et al.. Cu patterns with high adhesion strength and fine resolution directly fabricated on ceramic boards by ultrafast laser modification assisted metallization.Surface and Coatings Technology, 2022, 435: 128211 https://doi.org/10.1016/j.surfcoat.2022.128211
21
W, Tillmann O, Khalil I, Baumann et al.. Metallization of ceramic coatings: effect of cold gas spray parameters and roughness of the ceramic substrate on metallic layer properties.Surface and Coatings Technology, 2023, 458: 129322 https://doi.org/10.1016/j.surfcoat.2023.129322
22
V, Casalegno F, Smeacetto M, Salvo et al.. Study on the joining of ceramic matrix composites to an Al alloy for advanced brake systems.Ceramics International, 2021, 47(16): 23463–23473 https://doi.org/10.1016/j.ceramint.2021.05.062
23
Y, Zhang Y K, Chen D S, Yu et al.. A review paper on effect of the welding process of ceramics and metals.Journal of Materials Research and Technology, 2020, 9(6): 16214–16236 https://doi.org/10.1016/j.jmrt.2020.11.088
24
E H, Penilla L F, Devia-Cruz A T, Wieg et al.. Ultrafast laser welding of ceramics.Science, 2019, 365(6455): 803–808 https://doi.org/10.1126/science.aaw6699
25
H, Sonomura T, Ozaki K, Katagiri et al.. Metallization of Al2O3 ceramic with Mg by friction stir spot welding.Ceramics International, 2021, 47(9): 12789–12794 https://doi.org/10.1016/j.ceramint.2021.01.139
26
H, He R, Fu D, Wang et al.. A new method for preparation of direct bonding copper substrate on Al2O3.Materials Letters, 2007, 61(19–20): 4131–4133 https://doi.org/10.1016/j.matlet.2007.01.036
27
N R J, Hynes P S, Velu R, Kumar et al.. Investigate the influence of bonding temperature in transient liquid phase bonding of SiC and copper.Ceramics International, 2017, 43(10): 7762–7767 https://doi.org/10.1016/j.ceramint.2017.03.084
28
S, Wu Y, Qin D, Fu et al.. Preparation and mechanism of active Mo–Mn metallization on ZTA particles surface and interfacial bonding of reinforced iron matrix composite.Ceramics International, 2020, 46(10): 15972–15981 https://doi.org/10.1016/j.ceramint.2020.03.147
29
Z, Yang J, Lin Y, Wang et al.. Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag‒Cu‒Ti + W composite filler.Vacuum, 2017, 143: 294–302 https://doi.org/10.1016/j.vacuum.2017.06.020
30
R J, Mu Z W, Yang S Y, Niu et al.. Diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic with metallic Ni foil.Journal of the European Ceramic Society, 2021, 41(15): 7478–7487 https://doi.org/10.1016/j.jeurceramsoc.2021.08.048
31
Z, Li Z, Xu Z, Ma et al.. Fabricating porous Si3N4 ceramics joint by ultrasonic brazing at 450 °C.Materials Characterization, 2023, 196: 112595 https://doi.org/10.1016/j.matchar.2022.112595
32
Z, Li Z, Xu P, He et al.. Microstructure and enhanced joint performance of porous Si3N4 ceramics in ultrasonic soldering.Materials Science and Engineering A, 2022, 840: 142984 https://doi.org/10.1016/j.msea.2022.142984
33
Y Y, Chen G Y, Qian Z, Wang et al.. Innovation near-net-shape casting process of manganese metal based on grain refinement principle.Journal of Alloys and Compounds, 2022, 928: 167235 https://doi.org/10.1016/j.jallcom.2022.167235
34
Z, Wang W, Hu S, Yuan , et al.. Engineering Plasticity: Theory and Applications in Metal Forming. John Wiley & Sons, 2018
35
F S, Ong B, Rheingans K, Goto et al.. Residual stress induced failure of Ti‒6Al‒4V/Si3N4 joints brazed with Ag‒Cu‒Ti filler: the effects of brazing zone’s elasto-plasticity and ceramicsʼ intrinsic properties.Journal of the European Ceramic Society, 2021, 41(13): 6319–6329 https://doi.org/10.1016/j.jeurceramsoc.2021.06.038
36
W, Guo J, Hou M, Wan et al.. Microstructural evolution, mechanical properties, and FEM analysis of the residual stress of sapphire joints brazed with a novel borate glass.Ceramics International, 2021, 47(5): 6699–6710 https://doi.org/10.1016/j.ceramint.2020.11.010
37
Y, Wang M, Liu H, Zhang et al.. Fabrication of reliable ZTA composite/Ti6Al4V alloy joints via vacuum brazing method: microstructural evolution, mechanical properties and residual stress prediction.Journal of the European Ceramic Society, 2021, 41(7): 4273–4283 https://doi.org/10.1016/j.jeurceramsoc.2021.02.043
38
F, Contarato M, Bach J, Krier et al.. Evaluation of residual stresses during brazing of Al2O3‒ZrO2 to cemented tungsten carbide.International Journal of Applied Ceramic Technology, 2020, 17(3): 990–997 https://doi.org/10.1111/ijac.13413
39
H, Jiang C, Li X, Mao et al.. Vacuum brazing of AlON and Ti2AlNb with LiAlSiO4 enhanced Ag–Cu–Ti composite fillers: microstructure, mechanical properties and measurement of residual stress.Materials Science and Engineering A, 2022, 846: 143277 https://doi.org/10.1016/j.msea.2022.143277
40
S, Suresh A E Giannakopoulos . A new method for estimating residual stresses by instrumented sharp indentation.Acta Materialia, 1998, 46(16): 5755–5767 https://doi.org/10.1016/S1359-6454(98)00226-2
41
T Z, Kattamis M, Chen S, Skolianos et al.. Effect of residual-stresses on the strength, adhesion and wear-resistance of SiC coatings obtained by plasma-enhanced chemical-vapor-deposition on low-alloy steel.Surface and Coatings Technology, 1994, 70(1): 43–48 https://doi.org/10.1016/0257-8972(94)90073-6
42
Z, Wei W, Jiang M, Song et al.. Effects of element diffusion on microstructure evolution and residual stresses in a brazed joint: experimental and numerical modeling.Materialia, 2018, 4: 540–548 https://doi.org/10.1016/j.mtla.2018.11.012
43
Y S, Chung T Iseki . Interfacial phenomena in joining of ceramics by active metal brazing alloy.Engineering Fracture Mechanics, 1991, 40(4–5): 941–949 https://doi.org/10.1016/0013-7944(91)90255-Y
X G, Song Y X, Zhao S P, Hu et al.. Wetting of AgCu‒Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy.Ceramics International, 2018, 44(5): 4622–4629 https://doi.org/10.1016/j.ceramint.2017.11.212
46
Y, Huang Q P, Li X P, Xue et al.. Electrostatic probe analysis of SiO2 activating flux powders transition behavior in powder pool coupled activating TIG alternating current arc plasma for aluminum alloy.Journal of Manufacturing Processes, 2022, 84: 600–609 https://doi.org/10.1016/j.jmapro.2022.10.029
47
D L, Ye J H Hu . Practical Handbook of Thermodynamic Data for Inorganic Compounds. 2nd ed. Beijing: Metallurgic Industry Press, 2002 (in Chinese)
48
O, Dezellus R, Arroyave S G Fries . Thermodynamic modelling of the Ag‒Cu‒Ti ternary system.International Journal of Materials Research, 2011, 102(3): 286–297 https://doi.org/10.3139/146.110472
49
Z H, Zhong G X, Hou Z X, Zhu et al.. Microstructure and mechanical strength of SiC joints brazed with Cr3C2 particulate reinforced Ag‒Cu‒Ti brazing alloy.Ceramics International, 2018, 44(10): 11862–11868 https://doi.org/10.1016/j.ceramint.2018.04.002
50
J H, Xiong J H, Huang H, Zhang et al.. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag‒Cu‒Ti active brazing alloy.Materials Science and Engineering A, 2010, 527(4–5): 1096–1101 https://doi.org/10.1016/j.msea.2009.09.024
51
Q, Miao W, Ding Y, Zhu et al.. Brazing of CBN grains with Ag‒Cu‒Ti/TiX composite filler — the effect of TiX particles on microstructure and strength of bonding layer.Materials & Design, 2016, 98: 243–253 https://doi.org/10.1016/j.matdes.2016.03.033
52
Q, Zhu S, Li K, Hu et al.. Enhanced mechanical properties and thermal cycling stability of Al2O3-4J42 joints brazed using Ag–Cu–Ti/Cu/Ag–Cu composite filler.Ceramics International, 2021, 47(21): 30247–30255 https://doi.org/10.1016/j.ceramint.2021.07.204
53
P, Wang X, Liu H, Wang et al.. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag‒Cu‒Ti + Sc2(WO4)3 composite filler metal.Journal of Materials Science and Technology, 2022, 108: 102–109 https://doi.org/10.1016/j.jmst.2021.08.026
54
J G, Yang H Y, Fang X Wan . Effects of Al2O3-particulate-contained composite filler materials on the shear strength of alumina joints.Journal of Materials Science and Technology, 2002, 18(4): 289–290
55
J G, Yang H Y, Fang X Wan . Al2O3/Al2O3 joint brazed with Al2O3-particulate-contained composite Ag‒Cu‒Ti filler material.Journal of Materials Science and Technology, 2005, 21(5): 782–784
56
M, Yang T, Lin P He . Microstructure evolution of Al2O3/Al2O3 joint brazed with Ag–Cu–Ti + B + TiH2 composite filler.Ceramics International, 2012, 38(1): 289–294 https://doi.org/10.1016/j.ceramint.2011.07.005
57
M X, Yang T S, Lin P, He et al.. In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing.Materials Science and Engineering A, 2011, 528(9): 3520–3525 https://doi.org/10.1016/j.msea.2011.01.035
58
G B, Niu D P, Wang Z W, Yang et al.. Microstructure and mechanical properties of Al2O3/TiAl joints brazed with B powders reinforced Ag‒Cu‒Ti based composite fillers.Ceramics International, 2017, 43(1): 439–450 https://doi.org/10.1016/j.ceramint.2016.09.178
59
Y M, He J, Zhang C F, Liu et al.. Microstructure and mechanical properties of Si3N4/Si3N4 joint brazed with Ag–Cu–Ti + SiCp composite filler.Materials Science and Engineering A, 2010, 527(12): 2819–2825 https://doi.org/10.1016/j.msea.2010.01.065
60
Y, He Y, Sun J, Zhang et al.. An analysis of deformation mechanism in the Si3N4–AgCuTi + SiCp–Si3N4 joints by digital image correlation.Journal of the European Ceramic Society, 2013, 33(1): 157–164 https://doi.org/10.1016/j.jeurceramsoc.2012.07.038
61
X G, Song J, Cao Y F, Wang et al.. Effect of Si3N4-particles addition in Ag–Cu–Ti filler alloy on Si3N4/TiAl brazed joint.Materials Science and Engineering A, 2011, 528(15): 5135–5140 https://doi.org/10.1016/j.msea.2011.03.032
62
Y X, Zhao M R, Wang J, Cao et al.. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler.Materials & Design, 2015, 76: 40–46 https://doi.org/10.1016/j.matdes.2015.03.046
63
J H, Xiong J H, Huang G B, Lin et al.. Joining of Cf/SiC composite to TC4 using Ag–Cu–Ti–SiC composite filler material.Powder Metallurgy, 2011, 54(3): 269–272 https://doi.org/10.1179/174329009X434284
64
Y, Liu Q, Qi Y, Zhu et al.. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag–Cu–Ti hybrid tapes.Journal of Adhesion Science and Technology, 2015, 29(15): 1563–1571 https://doi.org/10.1080/01694243.2015.1034925
65
X, Dai J, Cao Y, Tian et al.. Effect of holding time on microstructure and mechanical properties of SiC/SiC joints brazed by Ag‒Cu‒Ti + B4C composite filler.Materials Characterization, 2016, 118: 294–301 https://doi.org/10.1016/j.matchar.2016.06.008
66
X, Dai J, Cao Z, Chen et al.. Brazing SiC ceramic using novel B4C reinforced Ag–Cu–Ti composite filler.Ceramics International, 2016, 42(5): 6319–6328 https://doi.org/10.1016/j.ceramint.2016.01.021
67
Q, Ma J, Pu S G, Li et al.. Introducing a 3D-SiO2-fiber interlayer for brazing SiC with TC4 by AgCuTi.Journal of Advanced Joining Processes, 2022, 5: 100082 https://doi.org/10.1016/j.jajp.2021.100082
68
J, Yang X, Zhang G, Ma et al.. A study of the SiCf/SiC composite/Ni-based superalloy dissimilar joint brazed with a composite filler.Journal of Materials Research and Technology, 2021, 11: 2114–2126 https://doi.org/10.1016/j.jmrt.2021.01.081
69
D R, Simhan A Ghosh . High vacuum active brazing of cBN with improved composite filler: microstructure, interfaces and performance evaluation.Vacuum, 2021, 183: 109803 https://doi.org/10.1016/j.vacuum.2020.109803
70
Y, Qin Z Yu . Joining of C/C composite to TC4 using SiC particle-reinforced brazing alloy.Materials Characterization, 2010, 61(6): 635–639 https://doi.org/10.1016/j.matchar.2010.03.008
71
Z W, Yang L X, Zhang W, Ren et al.. Interfacial microstructure and strengthening mechanism of BN-doped metal brazed Ti/SiO2‒BN joints.Journal of the European Ceramic Society, 2013, 33(4): 759–768 https://doi.org/10.1016/j.jeurceramsoc.2012.10.017
72
Y, Wang Z W, Yang L X, Zhang et al.. Microstructure and mechanical properties of SiO2‒BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti + TiH2 + BN composite filler.Journal of Materiomics, 2016, 2(1): 66–74 https://doi.org/10.1016/j.jmat.2015.10.003
73
Z W, Yang C L, Wang Y, Wang et al.. Active metal brazing of SiO2–BN ceramic and Ti plate with Ag–Cu–Ti + BN composite filler.Journal of Materials Science and Technology, 2017, 33(11): 1392–1401 https://doi.org/10.1016/j.jmst.2017.04.005
74
P, Mukhopadhyay A Ghosh . High vacuum brazing of synthetic diamond grits with steel using micro/nano Al2O3 reinforced Ag‒Cu‒Ti alloy.Journal of Materials Processing Technology, 2019, 266: 198–207 https://doi.org/10.1016/j.jmatprotec.2018.11.002
75
J, Lv Y, Huang R, Fu et al.. AlN/Cu composite ceramic substrate fabricated using a novel TiN/AgCuTi composite brazing alloy.Journal of the European Ceramic Society, 2020, 40(15): 5332–5338 https://doi.org/10.1016/j.jeurceramsoc.2020.07.060
76
T, Wang J, Zhang C, Liu et al.. Microstructure and mechanical properties of Si3N4/42CrMo joints brazed with TiNp modified active filler.Ceramics International, 2014, 40(5): 6881–6890 https://doi.org/10.1016/j.ceramint.2013.12.008
77
T, Wang C, Liu C, Leinenbach et al.. Microstructure and strengthening mechanism of Si3N4/Invar joint brazed with TiNp-doped filler.Materials Science and Engineering A, 2016, 650: 469–477 https://doi.org/10.1016/j.msea.2015.10.038
78
T, Wang T, Ivas W, Lee et al.. Relief of the residual stresses in Si3N4/Invar joints by multi-layered braze structure — experiments and simulation.Ceramics International, 2016, 42(6): 7080–7087 https://doi.org/10.1016/j.ceramint.2016.01.096
79
T, Wang J, Zhang W, Lee et al.. Numerical analysis on the residual stress distribution and its influence factor analysis for Si3N4/42CrMo brazed joint.Simulation Modelling Practice and Theory, 2019, 95: 49–59 https://doi.org/10.1016/j.simpat.2019.04.007
80
W, Ding J, Xu Z, Chen et al.. Influence of TiX (X = B2 or N) addition on the interfacial microstructure features of CBN grains and AgCuTi composite filler.Journal of Wuhan University of Technology: Materials Science Edition, 2010, 25(4): 579–582 https://doi.org/10.1007/s11595-010-0047-6
81
W F, Ding J H, Xu Z Z, Chen et al.. Brazed joints of CBN grains and AISI 1045 steel with AgCuTi‒TiC mixed powder as filler materials.International Journal of Minerals Metallurgy and Materials, 2011, 18(6): 717–724 https://doi.org/10.1007/s12613-011-0502-1
82
Q, Miao W, Ding Y, Zhu et al.. Joining interface and compressive strength of brazed cubic boron nitride grains with Ag‒Cu‒Ti/TiX composite fillers.Ceramics International, 2016, 42(12): 13723–13737 https://doi.org/10.1016/j.ceramint.2016.05.171
83
L X, Zhang Z, Sun Q, Chang et al.. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler.Ceramics International, 2019, 45(2): 1698–1709 https://doi.org/10.1016/j.ceramint.2018.10.052
84
A, Sharma B Ahn . Brazeability, microstructure, and joint characteristics of ZrO2/Ti‒6Al‒4V brazed by Ag‒Cu‒Ti filler reinforced with cerium oxide nanoparticles.Advances in Materials Science and Engineering, 2019, 2019: 1–11 https://doi.org/10.1155/2019/8602632
85
P, Mukhopadhyay A Ghosh . The making and performance of patterned-monolayer brazed diamond wheel produced with Ag-based novel active filler.Journal of Manufacturing Processes, 2022, 73: 220–234 https://doi.org/10.1016/j.jmapro.2021.10.043
86
C Y, Su X Z Y, Zhuang C T Pan . Al2O3/SUS304 brazing via AgCuTi‒W composite as active filler.Journal of Materials Engineering and Performance, 2014, 23(3): 906–911 https://doi.org/10.1007/s11665-013-0837-z
87
Y, Wang Y T, Zhao Z W, Yang et al.. Microstructure, residual stress and mechanical properties of Al2O3/Nb joints vacuum-brazed with two Ag-based active fillers.Vacuum, 2018, 158: 14–23 https://doi.org/10.1016/j.vacuum.2018.09.028
88
J, Zhang Y M He . Effect of Ti content on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Ag‒Cu‒Ti + Mo composite filler.Materials Science Forum, 2010, 654–656: 2018–2021 https://doi.org/10.4028/www.scientific.net/MSF.654-656.2018
89
Y M, He J, Zhang X, Wang et al.. Effect of brazing temperature on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Ag–Cu–Ti + Mo composite filler.Journal of Materials Science, 2011, 46(8): 2796–2804 https://doi.org/10.1007/s10853-010-5154-4
90
Y, He Y, Sun J, Zhang et al.. Revealing the strengthening mechanism in Si3N4 ceramic joint by atomic force microscopy coupled with nanoindentation techniques.Journal of the European Ceramic Society, 2012, 32(12): 3379–3388 https://doi.org/10.1016/j.jeurceramsoc.2012.04.004
91
Y M, He J, Zhang Y, Sun et al.. Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag–Cu–Ti + Mo composite filler.Journal of the European Ceramic Society, 2010, 30(15): 3245–3251 https://doi.org/10.1016/j.jeurceramsoc.2010.07.005
92
G B, Lin J H, Huang H, Zhang et al.. Microstructure and mechanical performance of brazed joints of Cf/SiC composite and Ti alloy using Ag–Cu–Ti–W.Science and Technology of Welding and Joining, 2006, 11(4): 379–383 https://doi.org/10.1179/174329306X113235
93
N, Wang D P, Wang Z W, Yang et al.. Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals.Ceramics International, 2016, 42(11): 12815–12824 https://doi.org/10.1016/j.ceramint.2016.05.045
94
N, Wang D P, Wang Z W, Yang et al.. Zirconia ceramic and Nb joints brazed with Mo-particle-reinforced Ag‒Cu‒Ti composite fillers: interfacial microstructure and formation mechanism.Ceramics International, 2017, 43(13): 9636–9643 https://doi.org/10.1016/j.ceramint.2017.04.133
95
H, He X, Du X, Huang et al.. The effect of Mo particles addition in Ag‒Cu‒Ti filler alloy on Ti(C,N)-based cermet/45 steel-brazed joints.Journal of Materials Engineering and Performance, 2018, 27(5): 2438–2445 https://doi.org/10.1007/s11665-018-3339-1
96
Y, Wang C, Jin Z, Yang et al.. Effects of Cu interlayers on the microstructure and mechanical properties of Al2O3/AgCuTi/Kovar brazed joints.International Journal of Applied Ceramic Technology, 2019, 16(3): 896–906 https://doi.org/10.1111/ijac.13147
97
Y, Zhao Y, Wang Z, Yang et al.. Relief of residual stress in Al2O3/Nb joints brazed with Ag‒Cu‒Ti/Cu/Ag‒Cu‒Ti composite interlayer.Archives of Civil and Mechanical Engineering, 2019, 19(1): 1–10 https://doi.org/10.1016/j.acme.2018.08.001
98
B, Fan J, Xu H, Lei et al.. Microstructure and mechanical properties of Al2O3/Cu joints brazed with Ag–Cu–Ti + Zn composite fillers.Ceramics International, 2022, 48(13): 18551–18557 https://doi.org/10.1016/j.ceramint.2022.03.125
H, Chang S W, Park S C, Choi et al.. Effects of residual stress on fracture strength of Si3N4/stainless steel joints with a Cu-interlayer.Journal of Materials Engineering and Performance, 2002, 11(6): 640–644 https://doi.org/10.1361/105994902770343638
101
J Y, Liu J, Zhang C F, Liu et al.. Microstructure and mechanical properties of porous Si3N4/Invar joints brazed with Ag‒Cu‒Ti + Mo/Cu/Ag‒Cu multi-layered composite filler.Ceramics International, 2017, 43(15): 11668–11675 https://doi.org/10.1016/j.ceramint.2017.05.354
102
J, Zhang J Y, Liu T P Wang . Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag‒Cu‒Ti/Cu/Ag‒Cu multi-layered filler.Journal of Materials Science and Technology, 2018, 34(4): 713–719 https://doi.org/10.1016/j.jmst.2017.07.001
103
W, Guo H, Zhang K, Ma et al.. Reactive brazing of silicon nitride to Invar alloy using Ni foam and AgCuTi intermediate layers.Ceramics International, 2019, 45(11): 13979–13987 https://doi.org/10.1016/j.ceramint.2019.04.097
104
G, Wang Y, Cai W, Wang et al.. AgCuTi/graphene-reinforced Cu foam: a novel filler to braze ZrB2‒SiC ceramic to Inconel 600 alloy.Ceramics International, 2020, 46(1): 531–537 https://doi.org/10.1016/j.ceramint.2019.08.293
105
G, Wang Y, Cai Q, Xu et al.. Microstructural and mechanical properties of inconel 600/ZrB2‒SiC joints brazed with AgCu/Cu-foam/AgCu/Ti multi-layered composite filler.Journal of Materials Research and Technology, 2020, 9(3): 3430–3437 https://doi.org/10.1016/j.jmrt.2020.01.080
106
H, Chen X, Nai S, Zhao et al.. Improvement for interfacial microstructure and mechanical properties of Ti3SiC2/Cu joint brazed by Ag‒Cu‒Ti filler with copper mesh.Crystals, 2021, 11(4): 401 https://doi.org/10.3390/cryst11040401
107
Y, Zhang X, Guo W, Guo et al.. Effect of Cu foam on the microstructure and strength of the SiCf/SiC-GH536 brazed joint.Ceramics International, 2022, 48(9): 12945–12953 https://doi.org/10.1016/j.ceramint.2022.01.167
108
Z W, Yang L X, Zhang Y C, Chen et al.. Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2–BN joint.Materials Science and Engineering A, 2013, 575: 199–205 https://doi.org/10.1016/j.msea.2013.03.055
109
J H, Lin D L, Luo S L, Chen et al.. Control interfacial microstructure and improve mechanical properties of TC4-SiO2f/SiO2 joint by AgCuTi with Cu foam as interlayer.Ceramics International, 2016, 42(15): 16619–16625 https://doi.org/10.1016/j.ceramint.2016.07.084
110
Z, Sun L X, Zhang Q, Chang et al.. Active brazed Invar-SiO2f/SiO2 joint using a low-expansion composite interlayer.Journal of Materials Processing Technology, 2018, 255: 8–16 https://doi.org/10.1016/j.jmatprotec.2017.11.058
111
R, Pan S, Kovacevic T, Lin et al.. Control of residual stresses in 2Si‒B‒3C‒N and Nb joints by the Ag‒Cu‒Ti + Mo composite interlayer.Materials & Design, 2016, 99: 193–200 https://doi.org/10.1016/j.matdes.2016.03.072
112
M G, Zhu D D L Chung . Active brazing alloy containing carbon-fibers for metal‒ceramic joining.Journal of the American Ceramic Society, 1994, 77(10): 2712–2720 https://doi.org/10.1111/j.1151-2916.1994.tb04666.x
113
Z W, Yang J H, Yang Y J, Han et al.. Microstructure and mechanical properties of 17-4 PH stainless steel and Al2O3 ceramic joints brazed with graphene reinforced Ag‒Cu‒Ti brazing alloy.Vacuum, 2020, 181: 109604 https://doi.org/10.1016/j.vacuum.2020.109604
114
G, Lin J, Huang H Zhang . Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers.Journal of Materials Processing Technology, 2007, 189(1–3): 256–261 https://doi.org/10.1016/j.jmatprotec.2007.01.031
115
Y, Song D, Liu S, Hu et al.. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic.Journal of the European Ceramic Society, 2019, 39(4): 696–704 https://doi.org/10.1016/j.jeurceramsoc.2018.11.046
116
Y, Song D, Liu S, Hu et al.. Brazing of metallized SiC ceramic to GH99 superalloy using graphene nanoplatelets reinforced AgCuTi composite filler.Ceramics International, 2019, 45(7): 8962–8970 https://doi.org/10.1016/j.ceramint.2019.01.227
117
P, Wang Z, Xu X, Liu et al.. Regulating the interfacial reaction of Sc2W3O12/AgCuTi composite filler by introducing a carbon barrier layer.Carbon, 2022, 191: 290–300 https://doi.org/10.1016/j.carbon.2022.01.065
118
P, Wang X, Liu H, Wang et al.. Negative thermal expansion Y2Mo3O12 particles reinforced AgCuTi composite filler for brazing Cf/SiC and GH3536.Materials Characterization, 2022, 185: 111754 https://doi.org/10.1016/j.matchar.2022.111754
119
Z H, Karadeniz D Kumlutas . A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials.Composite Structures, 2007, 78(1): 1–10 https://doi.org/10.1016/j.compstruct.2005.11.034
120
W F, Ding J H, Xu Z Z, Chen et al.. Microstructure characteristics of cBN/steel joints brazed with TiB2 modified active filler.Materials Science and Technology, 2009, 25(12): 1448–1452 https://doi.org/10.1179/174328408X363353
121
W, Ding J, Xu Z, Chen et al.. A study on effects of TiB2 contents on reactive products and compressive strength of brazed CBN grains.Surface and Interface Analysis, 2009, 41(3): 238–243 https://doi.org/10.1002/sia.3013
122
S, Guo L, Sun Z, Zheng et al.. Microstructure and corrosion behavior of Si3N4/316L joints brazed with Ag–Cu/Ag/Mo/Ag/Ag–Cu–Ti multilayer filler.Electrochimica Acta, 2021, 379: 138193 https://doi.org/10.1016/j.electacta.2021.138193
123
P, Wang J, Lin Z, Xu et al.. Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536.Carbon, 2023, 201: 765–775 https://doi.org/10.1016/j.carbon.2022.09.072