Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2023, Vol. 17 Issue (4): 230664   https://doi.org/10.1007/s11706-023-0664-6
  本期目录
Application of Ag–Cu–Ti active metal composite filler in ceramic joining: a review
Yuhang Li1, Jun WANG2, Ziyan SHEN2, Hangli Qian1, Wanliang Zhang1, Kaiyu Zhang1, Danqing Ying1, Qihang Zhou1, Chengshuang Zhou1, Lin Zhang1()
1. Institute of Material Forming and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2. Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
 全文: PDF(7934 KB)   HTML
Abstract

As a structural and functional material with excellent properties, ceramics play an extremely important role in a wide range of industries, including life and production. To expand the range of applications for ceramic materials, ceramics are often joined to metals and then used. Among the physical and chemical joining methods of ceramics to metals, the AMB method is efficient and simple, suitable for industrial applications, and has been a hot topic of research. However, due to the problems of residual stresses caused by the large difference in thermal expansion coefficients between ceramic and metal brazing, composite fillers have become a very worthwhile solution by regulating the physical properties of the brazing material and improving the weld structure. This review describes the wetting principle and application of Ag‒Cu‒Ti active metal filler in the field of ceramic joining, with emphasis on the current stage of composite filler, and discusses the influence on the former brazing properties and organization after the introduction of dissimilar materials.

Key wordsbrazing    composite filler    residual stress    active metal    ceramic‒metal joints
收稿日期: 2023-04-10      出版日期: 2023-10-23
Corresponding Author(s): Lin Zhang   
 引用本文:   
. [J]. Frontiers of Materials Science, 2023, 17(4): 230664.
Yuhang Li, Jun WANG, Ziyan SHEN, Hangli Qian, Wanliang Zhang, Kaiyu Zhang, Danqing Ying, Qihang Zhou, Chengshuang Zhou, Lin Zhang. Application of Ag–Cu–Ti active metal composite filler in ceramic joining: a review. Front. Mater. Sci., 2023, 17(4): 230664.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-023-0664-6
https://academic.hep.com.cn/foms/CN/Y2023/V17/I4/230664
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Reaction type298?1155 K1155?1300 K
ΔG/(J·mol?1)R2ΔG/(J·mol?1)R2
Ti + B → TiB?159890.66 + 0.71T0.6582?170200.48 + 5.83T0.9997
Ti + 2B → TiB2313059.78 + 30.5T0.9478268978.6 + 67.8T0.9999
Ti + TiB2 → 2TiB3658.79 ? 10.9T0.9860?1751.21 ?10.37T0.9992
Ti + C(graphite) → TiC?183295.75 + 10.92T0.9864?192599.51 + 14.92T0.9999
Ti + AlN → TiN + Al158701.69 ? 16.14T0.9999146552.3 ? 9.21T0.9999
Ti + Si → Ti5Si3?578311.84 ? 9.17T0.9708?639208.59 + 25T0.9999
Ti + B4C → TiC + 4TiB?752867.86 + 15.12T0.9738?804046.69 + 40.44T0.9999
Ti + Si3N4 → 4TiN + 3Si?603694.14 + 56.39T0.9811?625945.44 + 58.25T0.9999
8Ti + 3SiC → Ti5Si3 + 3TiC1118329.95 + 209.32T0.9863911064.07 + 368.93T0.9999
3Ti + Al2O3 → 3TiO + 2Al163349.21 ? 90.53T0.9999126675.57 ? 69.52T0.9999
3TiO → Ti2O3 + O294875.89 ? 96.15T0.9989??
Tab.1  
Fig.7  
Commercial namec(Ag)/%c(Cu)/%c(Ti)/%Solid phase line temperature, TS/°CLiquid phase line temperature, TL/°CForm of use
Ticusil a)68.826.74.5780900Powder, paste, wire, foil, preform
Cusil-ABA a)6335.251.75780815Powder, paste, wire, foil, preform
Ag?Cu?Ti b)68.7?70.7Bal.2?5770810Paste
TB-608T c)70282780800Paste
CB4 d)70.526.53780805Wire, ribbon, preforms
CB5 d)6434.21.8780810Wire, ribbon, preforms
CB10 d)64.825.210780805Paste
Tab.2  
Type of composite fillersCeramic substrateMaterial to be weldedBrazing temperature/KBrazing filler metalJoint strength/MPaWeld microstructureRef.
Reactive ceramic particle dopingAl2O3Al2O31273(Ag72Cu28)97Ti393.75?[54]
(Ag72Cu28)97Ti3 + 15 vol.% Al2O3 powders135.32?
Al2O3Al2O31273(Ag72Cu28)93Ti393.75?[55]
(Ag72Cu28)93Ti3 + 15 vol.% Al2O3 particulates135.32?
Al2O3Al2O31173Ag–26.4Cu–4.5Ti??[56]
Ag–26.4Cu–4.5Ti + 1.5 wt.% B + 3 wt.% TiH2?Al2O3/Ti3(Cu, Al)3O/Ti(Cu, Al)/Ag(s,s) + Cu(s,s) + TiB/Ti(Cu, Al)/Ti3(Cu, Al)3/Al2O3
Al2O3TC41173Ag–26.4Cu–4.5Ti~ 44Al2O3/Ti3Cu2AlO/Ti2Cu + Ti2(Cu, Al) + Ti(Cu, Al) + Ti3Al/Ag(s,s) + Ti(Cu, Al) + TiB/Ti2Cu + (Ti(s,s) + Ti2Cu) + Ti3Al/TC4 alloy[57]
Ag–26.4Cu–4.5Ti + B (obtain 40 vol.% TiB)77.9
Al2O3TiAl1153Ag?26.7Cu?4.5Ti + 3 wt.% TiH2~ 43[58]
Ag?26.7Cu?4.5Ti + 3 wt.% TiH2 + 0.5 wt.% B89Al2O3/Ti3(Cu, Al)3O/Ag(s.s) + TiB + Ti(Cu, Al) + fine AlCu2Ti/blocky AlCu2Ti + AlCuTi/TiAl
Si3N4Si3N41173Ag55.85?Cu36.86?Ti7.28~ 220 a)TiN/Ti5Si3[59]
Ag55.85?Cu36.86?Ti7.28 + 5 vol.% SiCp271.4 a)TiN/TiC/Ti5Si3
Si3N4Si3N41173Ag55.85?Cu36.86?Ti7.28~ 220 a)TiN/Ti5Si3[59]
Ag55.85?Cu36.86?Ti7.28 + 5 vol.% SiCp271.4 a)TiN/TiC/Ti5Si3
Si3N4Si3N4117369.12Ag–26.88Cu–4Ti200 b)?[60]
69.12Ag–26.88Cu–4Ti + 5 vol.% SiCp506.3 b)?
Si3N4TiAl115370Ag?27.5Cu?2.5Ti62TiAl/AlCu2Ti; reaction layer/Ag(s,s) +Al4Cu9 + Ti5Si3p + TiNp/TiN + Ti5Si3 reaction; layer/Si3N4[61]
70Ag?27.5Cu?2.5Ti + 3 wt.% Si3N4p115?
Si3N4TC41153(Ag–28Cu)98Ti249.2?[62]
(Ag–28Cu)98Ti2 + 2 wt.% nano-Si3N473.9TC4/Ti–Cu intermetallic layers/Ag-based composite reinforced by TiCu2, TiN and Ti5Si3 particles/TiN + Ti5Si3 layer/Si3N4
Cf/SiC compositeTC4122367.6Ag–26.4Cu–6Ti~ 49?[63]
67.6Ag–26.4Cu–6Ti + 20 vol.% SiC particles134Ti5Si3Cx/Ti5Si3/TiC/SiC
SiCSiC1173Cusil-ABA? c)?[64]
Cusil-ABA + 30 vol.% SiCp? c)?
SiCSiC122365.5Ag?25.5Cu?7.5Ti92 b)?[65]
65.5Ag?25.5Cu?7.5Ti?1.5B4C140 b)?
SiCSiC122365.5Ag?25.5Cu?7.5Ti48 b)?[66]
65.5Ag?25.5Cu?7.5Ti?1.5B4C140 b)SiC ceramic/Ti3SiC2 + Ti5Si3 layers/Ag-based and Cu-based solid solution reinforced by TiB, TiC and TiCu/Ti3SiC2 + Ti5Si3 layers/SiC ceramic
SiCSiC1080Ag?26.7Cu?4.5Ti78.6?[49]
Ag?26.7Cu?4.5Ti + 10 vol.% Cr3C2212.8?
SiCTC41163AgCuTi/AgCu~ 5?[67]
AgCuTi/100 μm 3D-SiO2-fiber/AgCu40?
SiCf/SiCGH5361546AuCu/Mo/AuCu~ 85?[68]
AuCuTi0.3B/Mo/AuCuTi0.3B124.9?
CBNAISI 10451093Cusil + 2 wt.% TiH20.15 d)?[69]
Cusil + 2 wt.% TiH2 + 5 wt.% μAl2O30.643 d)?
C/C compositeTC41183Ag?26.7Cu?4.6Ti22?[70]
Ag?26.7Cu?4.6Ti + 15 vol.% SiC particles29?
SiO2-BNTi1416Ag–27.5Cu–2.5Ti~ 7?[71]
Ag?27.5Cu?2.5Ti + 3 wt.% BN31.4Ti/α-β Ti/Ti2Cu + Ti3Cu4 + TiCu2 + TiCu4/Ag(s,s) + TiB + TiN + TiCu4/TiN + TiB2/SiO2?BN
SiO2-BNInvar1153Ag?27.5Cu?4.5Ti30?[72]
Ag?27.5Cu?4.5Ti + 3 wt.% h-BN39?
SiO2-BNTi plate1143Ag–27.5Cu–2.5Ti12?[73]
Ag–27.5Cu–2.5Ti + 3 wt.% BN31?
Diamond gritsAISI 10451123(72Ag28Cu)xTi100?x0.63 d)?[74]
(72Ag28Cu)xTi100?x + 1 wt.% micro-Al2O30.26 d)?
Non-reactive ceramic particle dopingAlNOxygen-free high-conductivity copper144668.0Ag?27.5Cu?4.5Ti52.4?[75]
68.0Ag?27.5Cu?4.5Ti + 4 wt.% TiNp131Cu/Ag(s,s) + Cu(s,s) + TiN + Ti?Cu phases/TiN/AlN
Si3N442CrMo steel1173(Ag–28Cu)96Ti4188 b)?[76]
(Ag–28Cu)96Ti4 + 5 vol.% TiNp376 b)Si3N4 ceramic/TiN + Ti5Si3 reaction layer/Ag(s.s) + Cu(s,s) + TiNp/TiC reaction layer/42CrMo steel
Si3N4Invar1446(Ag?28Cu)96Ti463?[77]
(Ag?28Cu)96Ti4 + 2 vol.% TiNp229Si3N4 ceramic/TiN + TiN + TiSi + Fe2Ti/Ag(s,s) + Cu(s,s) + TiNp/wavelike Fe2Ti + Ni3Ti inter-metallic/Ag?Cu eutectic/Invar alloy
Si3N4Invar1366(Ag?28Cu)96Ti4 + 5 vol.% TiNp173?[78]
(Ag?28Cu)96Ti4 + 5 vol.% TiNp/200 μm Cu/Ag?Cu256Si3N4 ceramic/compounds/Ag(s,s) + Cu(s,s) + TiNp/Cu/Ag?Cu eutectic/Invar alloy
Si3N442CrMo1173Ag–Cu–Ti~ 190 b)?[79]
Ag–Cu–Ti + 5 vol.% TiNp~ 380 b)?
CBN grainsAISI 10451193(Ag72Cu28)95Ti5??[80]
(Ag72Cu28)95Ti5 + 8 wt.% TiB2/TiN??
CBN grainsAISI 10451193(Ag72Cu28)95Ti5~ 50?[81]
(Ag72Cu28)95Ti5 + 16 wt.% TiC95?
CBN grainsAISI 1045119368.4Ag?26.6Cu?5Ti12.7 e)?[82]
68.4Ag?26.6Cu?5Ti + 8 wt.% TiB215 e)?
CBN grainsAISI 10451193(Ag72Cu28)95Ti554?[51]
68.4Ag?26.6Cu?5Ti + 16 wt.% TiN187?
SiO2f/SiO2Invar1183AgCuTi15±4?[83]
AgCuTi + 2 wt.% nano-TiO2p30±8?
ZrO2TC41253Ag?28Cu?2Ti19.9?[84]
Ag?28Cu?2Ti + 0.05 wt.% CeO222.8?
Diamond grinding wheelsAISI 10451093Ag?Cu?2Ti0.623 d)-[85]
Ag?Cu?2Ti + 2 wt.% μ-TiC0.151 d)?
Hard phase metal particle dopingAl2O3SUS304?67.6Ag?26.4Cu?6Ti13.5 f)?[86]
67.6Ag?26.4Cu?6Ti + W13.2 f)Al2O3 ceramic/TiO2/Cu3Ti3O + Ti3Ag/brazing alloy/TiFe2 + TiO/SUS304
Al2O3TiAl1153Ag?Cu?Ti92?[29]
Ag?Cu?Ti + 20 wt.% W148Al2O3/Ti(Cu, Al)3O/W particles Ag(s,s) + TiCu dispersed AlCu2Ti AlCu2Ti + Ag(s,s)/AlCu2Ti AlCuTi layer/TiAl
Al2O3Nb1173Ag?21Cu?4.5Ti152Al2O3/Ti3(Cu, Al)3O/TiCu + Ti2Cu3 + TiCu + Ag(s,s) + Cu(s,s)/Nb[87]
Ag?21Cu?4.5Ti + 8 wt.% Mo203Al2O3/Ti3(Cu, Al)3O/Ti?Cu + Ag(s,s) + Cu(s,s) + Mo/Nb
Si3N4Si3N4117369.12Ag?26.88Cu?2Ti + 5 vol.% Mo229.4 b)?[88]
69.12Ag?26.88Cu?4Ti + 5 vol.% Mo429.4 b)?
Si3N4Si3N4117369.12Ag–26.88Cu–4Ti200 b)?[89]
69.12Ag–26.88Cu–4Ti + 5 vol.% Mo429.4 b)?
Si3N4Si3N4117369.12Ag–26.88Cu–4Ti200 b)?[90]
69.12Ag–26.88Cu–4Ti+5 vol.% Mo429 b)?
Si3N442CrMo steel117369.12Ag–26.88Cu–4Ti114.2 b)TiN/Ti5Si3/Cu?Ti/Fe2Ti/FeTi[91]
69.12Ag–26.88Cu–4Ti + 10 vol.% Mo particles587.3 b)TiN/Ti5Si3/Cu?Ti/Mo/Fe2Ti/FeTi
Cf/SiCTi–6Al–4V117367.6Ag–26.4Cu–6Ti~ 18?[92]
67.6Ag–26.4Cu–6Ti+50 vol.% W180±30?
ZrO2Nb1173Ag?21Cu?4.5Ti157ZrO2/TiO/Ti3Cu3O/Ag(s,s) + Cu(s,s) + TiCu4 + Ti2Cu3 + TiCu/Nb[93]
Ag?21Cu?4.5Ti + 8.0 wt.% Mo310?
ZrO2Nb1173Ag?21Cu?4.5Ti + 1 wt.% Mo~ 200?[94]
Ag?21Cu?4.5Ti + 5 wt.% Mo370ZrO2/Ti3Cu3O/Ag(s,s) + Cu(s,s) + TiCu + Mo/Nb
Ti(C, N)45 Steel119394(Ag?28Cu)?6Ti184?[95]
94(Ag?28Cu)?6Ti + 8 wt.% Mo263Ti(C, N)-based cermet/NigTi + Cu3Ti/Ag(s,s) + Cu(s,s) + TiCu + Mo/Ti-based solid solution + FeTi + Fe2Ti/45 steel
Metal transition layerAl2O3Invar1153100 μm Ag–27.5Cu–2Ti110?[96]
100 μm Ag–27.5Cu–2Ti/500 μm Cu foam/100 μm Ag–27.5Cu–2Ti140?
Al2O3Nb1113Ag?27.6Cu?1.5Ti68?[97]
Ag?27.6Cu?1.5Ti + 300 μm Cu foil148?
Al2O34J421123100 μm Ag–Cu-4.5Ti~ 70?[52]
50 μm Ag–Cu?4.5Ti/100 μm Cu/50 μm AgCu~ 150?
Al2O3Cu1173Ag70.0?Cu26.7?Ti3.312.46 f)?[98]
Ag70.0?Cu26.7?Ti3.3 + 100 μm Zn foil20.89 f)Al2O3/TiO/(Cu, Al)3Ti3O + Ag(s.s)/Cu (Zn was volatilized)
Al2O3Cu1173Ag?26.7Cu?4.5Ti24.9?[99]
Ag?26.7Cu?4.5Ti/50 μm Ta foil37.3Al2O3/Cu3Ti3O reaction zone/Ag(s,s) + Cu(s,s)/Ta layer/Ag(s,s) + Cu(s,s)/Cu
Si3N4316SS11230.05 mm Cusil-ABA~ 220?[100]
0.05 mm Cusil-ABA + 0.2 mm Cu interlayer310?
Porous Si3N4Invar1173(Ag?28Cu)90Ti1053?[101]
(Ag?28Cu)90Ti10 + 5% Mo/150 μm Cu/Ag?28Cu83Reaction layer, Ag?Cu eutectic, Cu interlayer, Ag?Cu eutectic and Cu-rich phases
Si3N4Invar1446Ag?Cu?Ti47?[102]
Ag?Cu?Ti/100 μm Cu/Ag?Cu73?
Si3N4Invar1153100 μm 68.8Ag?26.8Cu–4.47Ti/100 μm 68.8Ag?26.8Cu?4.47Ti~ 40?[103]
100 μm 68.8Ag?26.8Cu?4.47Ti/0.2 mm Ni foam/100 μm 68.8Ag?26.8Cu?4.47Ti180?
ZrB2?SiCInconel 6001173AgCuTi/G-Cu foam/AgCuTi157In 600 alloy/TiFe2/TiCu/TiC/Cu(s,s) + Ag(s,s)/TiC + Ti5Si3/ZS ceramic[104]
ZrB2?SiCInconel 600117350 μm AgCu/1 mm Cu foam/50 μm AgCu77?[105]
20 μm Ti/50 μm AgCu/1 mm Cu foam/50 μm AgCu198Inconel 600/Ni?Fe?Cr + Ag(s,s) + TiCu/TiFe2 + Cu(s,s) + Ag(s,s)/TiC + Ti5Si3/ZrB2–SiC ceramic
Ti3SiC2Cu1143Ag?27.5Cu?2Ti~ 49?[106]
Ag?27.5Cu?2Ti/Cu mesh66.3±1.2Ti3SiC2 ceramic/Ti5Si3 + TiC + Ti2Cu + Ti3Cu/Ag(s,s) + Cu(s,s)/eutectic Ag?Cu + TiSiCu/Cu
SiCf/SiCGH536116350 μm 70.5Ag?26.5Cu?3Ti33?[107]
50 μm 70.5Ag?26.5Cu?3Ti/Cu foam/50 μm 70.5Ag?26.5Cu?3Ti76?
SiO2?BNInvar1123Ag–21Cu–4.5Ti14?[108]
Ag–21Cu–4.5Ti + 100 mm Cu foil43?
SiO2f/SiO2TC41173Ag?26.4Cu?4.5Ti~ 7?[109]
Ag?26.4Cu?4.5Ti + Cu foam59.6?
SiO2f/SiO2Invar1396AgCu-4.5 wt.% Ti12?[110]
AgCu?4.5 wt.% Ti/W interlayer/AgCu?1Ti33?
2Si?B?3C?NNb1123(Ag?28Cu)95TiH20?[111]
0.4 mm (Ag?28Cu)95(TiH2)5/250 μm Mo/(Ag?28Cu)95TiH248?
Carbon materialsAl2O3304SS1223–1273Ag63?Cu34.25?Ti1.7586.4±3?[112]
Ag63?Cu34.25?Ti1.75 + 8.4 vol.% carbon fibers110.7±3?
Al2O317-4 PH SS1153Ag?26.7Cu?4.5Ti170?[113]
Ag?26.7Cu?4.5Ti + 0.1 wt.% graphene21217-4 PH SS/Fe?Cr layer/fine TiFe2/fine Cu(s,s) + TiC + Ag(s,s)/Ti3(Cu, Al)3O + fine TiFe2/Al2O3 ceramic
SiCTi-alloy117367.6Ag–26.4Cu–6Ti64(Ti + Ti2Cu)/Ti2Cu/TiCu/Cu3Ti2[114]
67.6Ag–26.4Cu–6Ti + 12 vol.% short carbon fibers84(Ti + Ti2Cu)/Ti2Cu/TiCu/Cu3Ti2/TiC/Ti8C5
SiCSiC1173Ag?26.7Cu?4.5Ti15.9?[115]
Ag?26.7Cu?4.5Ti + 1% GNPs38SiC/TiC + Ti5Si3/Ag(s,s) + Cu(s,s) + GNPs + TiCu + TiC/Ti5Si3 + TiC/SiC
SiCGH99 superalloy1133Ag?26.7Cu?4.5Ti10.5?[116]
Ag?26.7Cu?4.5Ti + 1% GNPs26.4?
Negative expansion coefficient materialsCf/SiCGH35361133(Ag?28Cu)95.4(TiH2)4.624?[53]
(Ag?28Cu)95.4(TiH2)4.6 + 6 vol.% Sc2(WO4)364?
C/SiCGH35361133(Ag?28Cu)95.4(TiH2)4.624?[117]
(Ag?28Cu)95.4(TiH2)4.6 + 10 vol.% Sc2(WO4)3@C77?
C/SiCGH35361133(Ag?28Cu)95.4(TiH2)4.6~ 26?[118]
(Ag?28Cu)95.4(TiH2)4.6 + 3 wt.% Y2Mo3O1242?
AlONTi2AlNb1103Ag?27Cu?4.5Ti27.6AlON/(Cu, Al)3Ti3O/Ag(s,s) + AlCu2Ti + Cu(s,s)/AlCu2Ti/TiCu/Ti2Cu/Ti2AlNb[39]
Ag?27Cu?4.5Ti + 2 wt.% LiSiO496.1AlON/(Cu, Al)3Ti3O/Ag(s,s) + Cu(s,s) + LAS + TixOy + Cu3Ti3O/AlCu2Ti + Ti2Cu/Ti2AlNb
Tab.3  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
NTE materialCTE/K?1Service temperature/°C
Sc2W3O12?5.6?263 to 1600
Y2Mo3O12?12.610 to 1173
Y2W3O12?710 to 1173
Yb2Mo3O12?5.1200 to 800
ZrW2O8?8.7?273 to 777
Zr2P2WO12?225 to 800
Lu2Mo3O12?5.6200 to 800
Sc2Mo3O12?6.3?93 to 800
Er2W3O12?6.7473 to 1073
LiAlSO4?6.220 to 800
Tab.4  
Fig.14  
1 M, Xu Y R, Girish K P, Rakesh et al.. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications.Materials Today: Communications, 2021, 28: 102533
https://doi.org/10.1016/j.mtcomm.2021.102533
2 Otitoju T, Ayode Okoye P, Ugochukwu G, Chen et al.. Advanced ceramic components: materials, fabrication, and applications.Journal of Industrial and Engineering Chemistry, 2020, 85: 34–65
https://doi.org/10.1016/j.jiec.2020.02.002
3 Z, Xiao S, Yu Y, Li et al.. Materials development and potential applications of transparent ceramics: a review.Materials Science and Engineering R: Reports, 2020, 139: 100518
https://doi.org/10.1016/j.mser.2019.100518
4 Q, An J, Chen W, Ming et al.. Machining of SiC ceramic matrix composites: a review.Chinese Journal of Aeronautics, 2021, 34(4): 540–567
https://doi.org/10.1016/j.cja.2020.08.001
5 D, Li Y, Lin Q, Yuan et al.. A novel lead-free Na0.5Bi0.5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications.Journal of Materiomics, 2020, 6(4): 743–750
https://doi.org/10.1016/j.jmat.2020.06.005
6 H, Zhang T, Wei Q, Zhang et al.. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(47): 16648–16667
https://doi.org/10.1039/D0TC04381H
7 X, Wang X, Gao Z, Zhang et al.. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review.Journal of the European Ceramic Society, 2021, 41(9): 4671–4688
https://doi.org/10.1016/j.jeurceramsoc.2021.03.051
8 Z, Raszewski D, Brzakalski L, Derpenski et al.. Aspects and principles of material connections in restorative dentistry — a comprehensive review.Materials, 2022, 15(20): 7131
https://doi.org/10.3390/ma15207131
9 N, Deng J, Zhao L, Yang et al.. Effects of brazing technology on hermeticity of alumina ceramic–metal joint used in nuclear power plants.Frontiers in Materials, 2021, 7: 580938
https://doi.org/10.3389/fmats.2020.580938
10 X, Zeng E, Li G, Xia et al.. Silica-based ceramics toward electromagnetic microwave absorption.Journal of the European Ceramic Society, 2021, 41(15): 7381–7403
https://doi.org/10.1016/j.jeurceramsoc.2021.08.009
11 C, Li W, Sun Z, Lu et al.. Ceramic nanocomposite membranes and membrane fouling: a review.Water Research, 2020, 175: 115674
https://doi.org/10.1016/j.watres.2020.115674
12 T, Arumugham N J, Kaleekkal S, Gopal et al.. Recent developments in porous ceramic membranes for wastewater treatment and desalination: a review.Journal of Environmental Management, 2021, 293: 112925
https://doi.org/10.1016/j.jenvman.2021.112925
13 M I, Sayyed J F M, Jecong F C, Hila et al.. Radiation shielding characteristics of selected ceramics using the EPICS2017 library.Ceramics International, 2021, 47(9): 13181–13186
https://doi.org/10.1016/j.ceramint.2021.01.183
14 C, Chen A, Han M, Ye et al.. A new thermal insulation ceramic pigment: Ce-doped Y3Al5O12 compounds combined with high near-infrared reflectance and low thermal conductivity.Journal of Alloys and Compounds, 2021, 886: 161257
https://doi.org/10.1016/j.jallcom.2021.161257
15 F A, Mir N Z, Khan S Parvez . Recent advances and development in joining ceramics to metals.Materials Today: Proceedings, 2021, 46: 6570–6575
https://doi.org/10.1016/j.matpr.2021.04.047
16 B Ahn . Recent advances in brazing fillers for joining of dissimilar materials.Metals, 2021, 11(7): 1037
https://doi.org/10.3390/met11071037
17 S, Mishra A, Sharma D H, Jung et al.. Recent advances in active metal brazing of ceramics and process.Metals and Materials International, 2020, 26(8): 1087–1098
https://doi.org/10.1007/s12540-019-00536-4
18 L, Zhao X, Li J, Hou et al.. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag–Cu eutectic and Cu interlayer.Applied Surface Science, 2012, 258(24): 10053–10057
https://doi.org/10.1016/j.apsusc.2012.06.073
19 M M, Singh G, Vijaya M S, Krupashankara et al.. Deposition and characterization of aluminium thin film coatings using DC magnetron sputtering process.Materials Today: Proceedings, 2018, 5(1): 2696–2704
https://doi.org/10.1016/j.matpr.2018.01.050
20 L, Wu L, Meng Y, Wang et al.. Cu patterns with high adhesion strength and fine resolution directly fabricated on ceramic boards by ultrafast laser modification assisted metallization.Surface and Coatings Technology, 2022, 435: 128211
https://doi.org/10.1016/j.surfcoat.2022.128211
21 W, Tillmann O, Khalil I, Baumann et al.. Metallization of ceramic coatings: effect of cold gas spray parameters and roughness of the ceramic substrate on metallic layer properties.Surface and Coatings Technology, 2023, 458: 129322
https://doi.org/10.1016/j.surfcoat.2023.129322
22 V, Casalegno F, Smeacetto M, Salvo et al.. Study on the joining of ceramic matrix composites to an Al alloy for advanced brake systems.Ceramics International, 2021, 47(16): 23463–23473
https://doi.org/10.1016/j.ceramint.2021.05.062
23 Y, Zhang Y K, Chen D S, Yu et al.. A review paper on effect of the welding process of ceramics and metals.Journal of Materials Research and Technology, 2020, 9(6): 16214–16236
https://doi.org/10.1016/j.jmrt.2020.11.088
24 E H, Penilla L F, Devia-Cruz A T, Wieg et al.. Ultrafast laser welding of ceramics.Science, 2019, 365(6455): 803–808
https://doi.org/10.1126/science.aaw6699
25 H, Sonomura T, Ozaki K, Katagiri et al.. Metallization of Al2O3 ceramic with Mg by friction stir spot welding.Ceramics International, 2021, 47(9): 12789–12794
https://doi.org/10.1016/j.ceramint.2021.01.139
26 H, He R, Fu D, Wang et al.. A new method for preparation of direct bonding copper substrate on Al2O3.Materials Letters, 2007, 61(19–20): 4131–4133
https://doi.org/10.1016/j.matlet.2007.01.036
27 N R J, Hynes P S, Velu R, Kumar et al.. Investigate the influence of bonding temperature in transient liquid phase bonding of SiC and copper.Ceramics International, 2017, 43(10): 7762–7767
https://doi.org/10.1016/j.ceramint.2017.03.084
28 S, Wu Y, Qin D, Fu et al.. Preparation and mechanism of active Mo–Mn metallization on ZTA particles surface and interfacial bonding of reinforced iron matrix composite.Ceramics International, 2020, 46(10): 15972–15981
https://doi.org/10.1016/j.ceramint.2020.03.147
29 Z, Yang J, Lin Y, Wang et al.. Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag‒Cu‒Ti + W composite filler.Vacuum, 2017, 143: 294–302
https://doi.org/10.1016/j.vacuum.2017.06.020
30 R J, Mu Z W, Yang S Y, Niu et al.. Diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic with metallic Ni foil.Journal of the European Ceramic Society, 2021, 41(15): 7478–7487
https://doi.org/10.1016/j.jeurceramsoc.2021.08.048
31 Z, Li Z, Xu Z, Ma et al.. Fabricating porous Si3N4 ceramics joint by ultrasonic brazing at 450 °C.Materials Characterization, 2023, 196: 112595
https://doi.org/10.1016/j.matchar.2022.112595
32 Z, Li Z, Xu P, He et al.. Microstructure and enhanced joint performance of porous Si3N4 ceramics in ultrasonic soldering.Materials Science and Engineering A, 2022, 840: 142984
https://doi.org/10.1016/j.msea.2022.142984
33 Y Y, Chen G Y, Qian Z, Wang et al.. Innovation near-net-shape casting process of manganese metal based on grain refinement principle.Journal of Alloys and Compounds, 2022, 928: 167235
https://doi.org/10.1016/j.jallcom.2022.167235
34 Z, Wang W, Hu S, Yuan , et al.. Engineering Plasticity: Theory and Applications in Metal Forming. John Wiley & Sons, 2018
35 F S, Ong B, Rheingans K, Goto et al.. Residual stress induced failure of Ti‒6Al‒4V/Si3N4 joints brazed with Ag‒Cu‒Ti filler: the effects of brazing zone’s elasto-plasticity and ceramicsʼ intrinsic properties.Journal of the European Ceramic Society, 2021, 41(13): 6319–6329
https://doi.org/10.1016/j.jeurceramsoc.2021.06.038
36 W, Guo J, Hou M, Wan et al.. Microstructural evolution, mechanical properties, and FEM analysis of the residual stress of sapphire joints brazed with a novel borate glass.Ceramics International, 2021, 47(5): 6699–6710
https://doi.org/10.1016/j.ceramint.2020.11.010
37 Y, Wang M, Liu H, Zhang et al.. Fabrication of reliable ZTA composite/Ti6Al4V alloy joints via vacuum brazing method: microstructural evolution, mechanical properties and residual stress prediction.Journal of the European Ceramic Society, 2021, 41(7): 4273–4283
https://doi.org/10.1016/j.jeurceramsoc.2021.02.043
38 F, Contarato M, Bach J, Krier et al.. Evaluation of residual stresses during brazing of Al2O3‒ZrO2 to cemented tungsten carbide.International Journal of Applied Ceramic Technology, 2020, 17(3): 990–997
https://doi.org/10.1111/ijac.13413
39 H, Jiang C, Li X, Mao et al.. Vacuum brazing of AlON and Ti2AlNb with LiAlSiO4 enhanced Ag–Cu–Ti composite fillers: microstructure, mechanical properties and measurement of residual stress.Materials Science and Engineering A, 2022, 846: 143277
https://doi.org/10.1016/j.msea.2022.143277
40 S, Suresh A E Giannakopoulos . A new method for estimating residual stresses by instrumented sharp indentation.Acta Materialia, 1998, 46(16): 5755–5767
https://doi.org/10.1016/S1359-6454(98)00226-2
41 T Z, Kattamis M, Chen S, Skolianos et al.. Effect of residual-stresses on the strength, adhesion and wear-resistance of SiC coatings obtained by plasma-enhanced chemical-vapor-deposition on low-alloy steel.Surface and Coatings Technology, 1994, 70(1): 43–48
https://doi.org/10.1016/0257-8972(94)90073-6
42 Z, Wei W, Jiang M, Song et al.. Effects of element diffusion on microstructure evolution and residual stresses in a brazed joint: experimental and numerical modeling.Materialia, 2018, 4: 540–548
https://doi.org/10.1016/j.mtla.2018.11.012
43 Y S, Chung T Iseki . Interfacial phenomena in joining of ceramics by active metal brazing alloy.Engineering Fracture Mechanics, 1991, 40(4–5): 941–949
https://doi.org/10.1016/0013-7944(91)90255-Y
44 R, Tadmor R, Das S, Gulec et al.. Solid‒liquid work of adhesion.Langmuir, 2017, 33(15): 3594–4600
https://doi.org/10.1021/acs.langmuir.6b04437
45 X G, Song Y X, Zhao S P, Hu et al.. Wetting of AgCu‒Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy.Ceramics International, 2018, 44(5): 4622–4629
https://doi.org/10.1016/j.ceramint.2017.11.212
46 Y, Huang Q P, Li X P, Xue et al.. Electrostatic probe analysis of SiO2 activating flux powders transition behavior in powder pool coupled activating TIG alternating current arc plasma for aluminum alloy.Journal of Manufacturing Processes, 2022, 84: 600–609
https://doi.org/10.1016/j.jmapro.2022.10.029
47 D L, Ye J H Hu . Practical Handbook of Thermodynamic Data for Inorganic Compounds. 2nd ed. Beijing: Metallurgic Industry Press, 2002 (in Chinese)
48 O, Dezellus R, Arroyave S G Fries . Thermodynamic modelling of the Ag‒Cu‒Ti ternary system.International Journal of Materials Research, 2011, 102(3): 286–297
https://doi.org/10.3139/146.110472
49 Z H, Zhong G X, Hou Z X, Zhu et al.. Microstructure and mechanical strength of SiC joints brazed with Cr3C2 particulate reinforced Ag‒Cu‒Ti brazing alloy.Ceramics International, 2018, 44(10): 11862–11868
https://doi.org/10.1016/j.ceramint.2018.04.002
50 J H, Xiong J H, Huang H, Zhang et al.. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag‒Cu‒Ti active brazing alloy.Materials Science and Engineering A, 2010, 527(4–5): 1096–1101
https://doi.org/10.1016/j.msea.2009.09.024
51 Q, Miao W, Ding Y, Zhu et al.. Brazing of CBN grains with Ag‒Cu‒Ti/TiX composite filler — the effect of TiX particles on microstructure and strength of bonding layer.Materials & Design, 2016, 98: 243–253
https://doi.org/10.1016/j.matdes.2016.03.033
52 Q, Zhu S, Li K, Hu et al.. Enhanced mechanical properties and thermal cycling stability of Al2O3-4J42 joints brazed using Ag–Cu–Ti/Cu/Ag–Cu composite filler.Ceramics International, 2021, 47(21): 30247–30255
https://doi.org/10.1016/j.ceramint.2021.07.204
53 P, Wang X, Liu H, Wang et al.. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag‒Cu‒Ti + Sc2(WO4)3 composite filler metal.Journal of Materials Science and Technology, 2022, 108: 102–109
https://doi.org/10.1016/j.jmst.2021.08.026
54 J G, Yang H Y, Fang X Wan . Effects of Al2O3-particulate-contained composite filler materials on the shear strength of alumina joints.Journal of Materials Science and Technology, 2002, 18(4): 289–290
55 J G, Yang H Y, Fang X Wan . Al2O3/Al2O3 joint brazed with Al2O3-particulate-contained composite Ag‒Cu‒Ti filler material.Journal of Materials Science and Technology, 2005, 21(5): 782–784
56 M, Yang T, Lin P He . Microstructure evolution of Al2O3/Al2O3 joint brazed with Ag–Cu–Ti + B + TiH2 composite filler.Ceramics International, 2012, 38(1): 289–294
https://doi.org/10.1016/j.ceramint.2011.07.005
57 M X, Yang T S, Lin P, He et al.. In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing.Materials Science and Engineering A, 2011, 528(9): 3520–3525
https://doi.org/10.1016/j.msea.2011.01.035
58 G B, Niu D P, Wang Z W, Yang et al.. Microstructure and mechanical properties of Al2O3/TiAl joints brazed with B powders reinforced Ag‒Cu‒Ti based composite fillers.Ceramics International, 2017, 43(1): 439–450
https://doi.org/10.1016/j.ceramint.2016.09.178
59 Y M, He J, Zhang C F, Liu et al.. Microstructure and mechanical properties of Si3N4/Si3N4 joint brazed with Ag–Cu–Ti + SiCp composite filler.Materials Science and Engineering A, 2010, 527(12): 2819–2825
https://doi.org/10.1016/j.msea.2010.01.065
60 Y, He Y, Sun J, Zhang et al.. An analysis of deformation mechanism in the Si3N4–AgCuTi + SiCp–Si3N4 joints by digital image correlation.Journal of the European Ceramic Society, 2013, 33(1): 157–164
https://doi.org/10.1016/j.jeurceramsoc.2012.07.038
61 X G, Song J, Cao Y F, Wang et al.. Effect of Si3N4-particles addition in Ag–Cu–Ti filler alloy on Si3N4/TiAl brazed joint.Materials Science and Engineering A, 2011, 528(15): 5135–5140
https://doi.org/10.1016/j.msea.2011.03.032
62 Y X, Zhao M R, Wang J, Cao et al.. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler.Materials & Design, 2015, 76: 40–46
https://doi.org/10.1016/j.matdes.2015.03.046
63 J H, Xiong J H, Huang G B, Lin et al.. Joining of Cf/SiC composite to TC4 using Ag–Cu–Ti–SiC composite filler material.Powder Metallurgy, 2011, 54(3): 269–272
https://doi.org/10.1179/174329009X434284
64 Y, Liu Q, Qi Y, Zhu et al.. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag–Cu–Ti hybrid tapes.Journal of Adhesion Science and Technology, 2015, 29(15): 1563–1571
https://doi.org/10.1080/01694243.2015.1034925
65 X, Dai J, Cao Y, Tian et al.. Effect of holding time on microstructure and mechanical properties of SiC/SiC joints brazed by Ag‒Cu‒Ti + B4C composite filler.Materials Characterization, 2016, 118: 294–301
https://doi.org/10.1016/j.matchar.2016.06.008
66 X, Dai J, Cao Z, Chen et al.. Brazing SiC ceramic using novel B4C reinforced Ag–Cu–Ti composite filler.Ceramics International, 2016, 42(5): 6319–6328
https://doi.org/10.1016/j.ceramint.2016.01.021
67 Q, Ma J, Pu S G, Li et al.. Introducing a 3D-SiO2-fiber interlayer for brazing SiC with TC4 by AgCuTi.Journal of Advanced Joining Processes, 2022, 5: 100082
https://doi.org/10.1016/j.jajp.2021.100082
68 J, Yang X, Zhang G, Ma et al.. A study of the SiCf/SiC composite/Ni-based superalloy dissimilar joint brazed with a composite filler.Journal of Materials Research and Technology, 2021, 11: 2114–2126
https://doi.org/10.1016/j.jmrt.2021.01.081
69 D R, Simhan A Ghosh . High vacuum active brazing of cBN with improved composite filler: microstructure, interfaces and performance evaluation.Vacuum, 2021, 183: 109803
https://doi.org/10.1016/j.vacuum.2020.109803
70 Y, Qin Z Yu . Joining of C/C composite to TC4 using SiC particle-reinforced brazing alloy.Materials Characterization, 2010, 61(6): 635–639
https://doi.org/10.1016/j.matchar.2010.03.008
71 Z W, Yang L X, Zhang W, Ren et al.. Interfacial microstructure and strengthening mechanism of BN-doped metal brazed Ti/SiO2‒BN joints.Journal of the European Ceramic Society, 2013, 33(4): 759–768
https://doi.org/10.1016/j.jeurceramsoc.2012.10.017
72 Y, Wang Z W, Yang L X, Zhang et al.. Microstructure and mechanical properties of SiO2‒BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti + TiH2 + BN composite filler.Journal of Materiomics, 2016, 2(1): 66–74
https://doi.org/10.1016/j.jmat.2015.10.003
73 Z W, Yang C L, Wang Y, Wang et al.. Active metal brazing of SiO2–BN ceramic and Ti plate with Ag–Cu–Ti + BN composite filler.Journal of Materials Science and Technology, 2017, 33(11): 1392–1401
https://doi.org/10.1016/j.jmst.2017.04.005
74 P, Mukhopadhyay A Ghosh . High vacuum brazing of synthetic diamond grits with steel using micro/nano Al2O3 reinforced Ag‒Cu‒Ti alloy.Journal of Materials Processing Technology, 2019, 266: 198–207
https://doi.org/10.1016/j.jmatprotec.2018.11.002
75 J, Lv Y, Huang R, Fu et al.. AlN/Cu composite ceramic substrate fabricated using a novel TiN/AgCuTi composite brazing alloy.Journal of the European Ceramic Society, 2020, 40(15): 5332–5338
https://doi.org/10.1016/j.jeurceramsoc.2020.07.060
76 T, Wang J, Zhang C, Liu et al.. Microstructure and mechanical properties of Si3N4/42CrMo joints brazed with TiNp modified active filler.Ceramics International, 2014, 40(5): 6881–6890
https://doi.org/10.1016/j.ceramint.2013.12.008
77 T, Wang C, Liu C, Leinenbach et al.. Microstructure and strengthening mechanism of Si3N4/Invar joint brazed with TiNp-doped filler.Materials Science and Engineering A, 2016, 650: 469–477
https://doi.org/10.1016/j.msea.2015.10.038
78 T, Wang T, Ivas W, Lee et al.. Relief of the residual stresses in Si3N4/Invar joints by multi-layered braze structure — experiments and simulation.Ceramics International, 2016, 42(6): 7080–7087
https://doi.org/10.1016/j.ceramint.2016.01.096
79 T, Wang J, Zhang W, Lee et al.. Numerical analysis on the residual stress distribution and its influence factor analysis for Si3N4/42CrMo brazed joint.Simulation Modelling Practice and Theory, 2019, 95: 49–59
https://doi.org/10.1016/j.simpat.2019.04.007
80 W, Ding J, Xu Z, Chen et al.. Influence of TiX (X = B2 or N) addition on the interfacial microstructure features of CBN grains and AgCuTi composite filler.Journal of Wuhan University of Technology: Materials Science Edition, 2010, 25(4): 579–582
https://doi.org/10.1007/s11595-010-0047-6
81 W F, Ding J H, Xu Z Z, Chen et al.. Brazed joints of CBN grains and AISI 1045 steel with AgCuTi‒TiC mixed powder as filler materials.International Journal of Minerals Metallurgy and Materials, 2011, 18(6): 717–724
https://doi.org/10.1007/s12613-011-0502-1
82 Q, Miao W, Ding Y, Zhu et al.. Joining interface and compressive strength of brazed cubic boron nitride grains with Ag‒Cu‒Ti/TiX composite fillers.Ceramics International, 2016, 42(12): 13723–13737
https://doi.org/10.1016/j.ceramint.2016.05.171
83 L X, Zhang Z, Sun Q, Chang et al.. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler.Ceramics International, 2019, 45(2): 1698–1709
https://doi.org/10.1016/j.ceramint.2018.10.052
84 A, Sharma B Ahn . Brazeability, microstructure, and joint characteristics of ZrO2/Ti‒6Al‒4V brazed by Ag‒Cu‒Ti filler reinforced with cerium oxide nanoparticles.Advances in Materials Science and Engineering, 2019, 2019: 1–11
https://doi.org/10.1155/2019/8602632
85 P, Mukhopadhyay A Ghosh . The making and performance of patterned-monolayer brazed diamond wheel produced with Ag-based novel active filler.Journal of Manufacturing Processes, 2022, 73: 220–234
https://doi.org/10.1016/j.jmapro.2021.10.043
86 C Y, Su X Z Y, Zhuang C T Pan . Al2O3/SUS304 brazing via AgCuTi‒W composite as active filler.Journal of Materials Engineering and Performance, 2014, 23(3): 906–911
https://doi.org/10.1007/s11665-013-0837-z
87 Y, Wang Y T, Zhao Z W, Yang et al.. Microstructure, residual stress and mechanical properties of Al2O3/Nb joints vacuum-brazed with two Ag-based active fillers.Vacuum, 2018, 158: 14–23
https://doi.org/10.1016/j.vacuum.2018.09.028
88 J, Zhang Y M He . Effect of Ti content on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Ag‒Cu‒Ti + Mo composite filler.Materials Science Forum, 2010, 654–656: 2018–2021
https://doi.org/10.4028/www.scientific.net/MSF.654-656.2018
89 Y M, He J, Zhang X, Wang et al.. Effect of brazing temperature on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Ag–Cu–Ti + Mo composite filler.Journal of Materials Science, 2011, 46(8): 2796–2804
https://doi.org/10.1007/s10853-010-5154-4
90 Y, He Y, Sun J, Zhang et al.. Revealing the strengthening mechanism in Si3N4 ceramic joint by atomic force microscopy coupled with nanoindentation techniques.Journal of the European Ceramic Society, 2012, 32(12): 3379–3388
https://doi.org/10.1016/j.jeurceramsoc.2012.04.004
91 Y M, He J, Zhang Y, Sun et al.. Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag–Cu–Ti + Mo composite filler.Journal of the European Ceramic Society, 2010, 30(15): 3245–3251
https://doi.org/10.1016/j.jeurceramsoc.2010.07.005
92 G B, Lin J H, Huang H, Zhang et al.. Microstructure and mechanical performance of brazed joints of Cf/SiC composite and Ti alloy using Ag–Cu–Ti–W.Science and Technology of Welding and Joining, 2006, 11(4): 379–383
https://doi.org/10.1179/174329306X113235
93 N, Wang D P, Wang Z W, Yang et al.. Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals.Ceramics International, 2016, 42(11): 12815–12824
https://doi.org/10.1016/j.ceramint.2016.05.045
94 N, Wang D P, Wang Z W, Yang et al.. Zirconia ceramic and Nb joints brazed with Mo-particle-reinforced Ag‒Cu‒Ti composite fillers: interfacial microstructure and formation mechanism.Ceramics International, 2017, 43(13): 9636–9643
https://doi.org/10.1016/j.ceramint.2017.04.133
95 H, He X, Du X, Huang et al.. The effect of Mo particles addition in Ag‒Cu‒Ti filler alloy on Ti(C,N)-based cermet/45 steel-brazed joints.Journal of Materials Engineering and Performance, 2018, 27(5): 2438–2445
https://doi.org/10.1007/s11665-018-3339-1
96 Y, Wang C, Jin Z, Yang et al.. Effects of Cu interlayers on the microstructure and mechanical properties of Al2O3/AgCuTi/Kovar brazed joints.International Journal of Applied Ceramic Technology, 2019, 16(3): 896–906
https://doi.org/10.1111/ijac.13147
97 Y, Zhao Y, Wang Z, Yang et al.. Relief of residual stress in Al2O3/Nb joints brazed with Ag‒Cu‒Ti/Cu/Ag‒Cu‒Ti composite interlayer.Archives of Civil and Mechanical Engineering, 2019, 19(1): 1–10
https://doi.org/10.1016/j.acme.2018.08.001
98 B, Fan J, Xu H, Lei et al.. Microstructure and mechanical properties of Al2O3/Cu joints brazed with Ag–Cu–Ti + Zn composite fillers.Ceramics International, 2022, 48(13): 18551–18557
https://doi.org/10.1016/j.ceramint.2022.03.125
99 B, Jin X, Huang M, Zou et al.. Joining of Al2O3 ceramic to Cu using refractory metal foil.Ceramics International, 2022, 48(3): 3455–3463
https://doi.org/10.1016/j.ceramint.2021.10.123
100 H, Chang S W, Park S C, Choi et al.. Effects of residual stress on fracture strength of Si3N4/stainless steel joints with a Cu-interlayer.Journal of Materials Engineering and Performance, 2002, 11(6): 640–644
https://doi.org/10.1361/105994902770343638
101 J Y, Liu J, Zhang C F, Liu et al.. Microstructure and mechanical properties of porous Si3N4/Invar joints brazed with Ag‒Cu‒Ti + Mo/Cu/Ag‒Cu multi-layered composite filler.Ceramics International, 2017, 43(15): 11668–11675
https://doi.org/10.1016/j.ceramint.2017.05.354
102 J, Zhang J Y, Liu T P Wang . Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag‒Cu‒Ti/Cu/Ag‒Cu multi-layered filler.Journal of Materials Science and Technology, 2018, 34(4): 713–719
https://doi.org/10.1016/j.jmst.2017.07.001
103 W, Guo H, Zhang K, Ma et al.. Reactive brazing of silicon nitride to Invar alloy using Ni foam and AgCuTi intermediate layers.Ceramics International, 2019, 45(11): 13979–13987
https://doi.org/10.1016/j.ceramint.2019.04.097
104 G, Wang Y, Cai W, Wang et al.. AgCuTi/graphene-reinforced Cu foam: a novel filler to braze ZrB2‒SiC ceramic to Inconel 600 alloy.Ceramics International, 2020, 46(1): 531–537
https://doi.org/10.1016/j.ceramint.2019.08.293
105 G, Wang Y, Cai Q, Xu et al.. Microstructural and mechanical properties of inconel 600/ZrB2‒SiC joints brazed with AgCu/Cu-foam/AgCu/Ti multi-layered composite filler.Journal of Materials Research and Technology, 2020, 9(3): 3430–3437
https://doi.org/10.1016/j.jmrt.2020.01.080
106 H, Chen X, Nai S, Zhao et al.. Improvement for interfacial microstructure and mechanical properties of Ti3SiC2/Cu joint brazed by Ag‒Cu‒Ti filler with copper mesh.Crystals, 2021, 11(4): 401
https://doi.org/10.3390/cryst11040401
107 Y, Zhang X, Guo W, Guo et al.. Effect of Cu foam on the microstructure and strength of the SiCf/SiC-GH536 brazed joint.Ceramics International, 2022, 48(9): 12945–12953
https://doi.org/10.1016/j.ceramint.2022.01.167
108 Z W, Yang L X, Zhang Y C, Chen et al.. Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2–BN joint.Materials Science and Engineering A, 2013, 575: 199–205
https://doi.org/10.1016/j.msea.2013.03.055
109 J H, Lin D L, Luo S L, Chen et al.. Control interfacial microstructure and improve mechanical properties of TC4-SiO2f/SiO2 joint by AgCuTi with Cu foam as interlayer.Ceramics International, 2016, 42(15): 16619–16625
https://doi.org/10.1016/j.ceramint.2016.07.084
110 Z, Sun L X, Zhang Q, Chang et al.. Active brazed Invar-SiO2f/SiO2 joint using a low-expansion composite interlayer.Journal of Materials Processing Technology, 2018, 255: 8–16
https://doi.org/10.1016/j.jmatprotec.2017.11.058
111 R, Pan S, Kovacevic T, Lin et al.. Control of residual stresses in 2Si‒B‒3C‒N and Nb joints by the Ag‒Cu‒Ti + Mo composite interlayer.Materials & Design, 2016, 99: 193–200
https://doi.org/10.1016/j.matdes.2016.03.072
112 M G, Zhu D D L Chung . Active brazing alloy containing carbon-fibers for metal‒ceramic joining.Journal of the American Ceramic Society, 1994, 77(10): 2712–2720
https://doi.org/10.1111/j.1151-2916.1994.tb04666.x
113 Z W, Yang J H, Yang Y J, Han et al.. Microstructure and mechanical properties of 17-4 PH stainless steel and Al2O3 ceramic joints brazed with graphene reinforced Ag‒Cu‒Ti brazing alloy.Vacuum, 2020, 181: 109604
https://doi.org/10.1016/j.vacuum.2020.109604
114 G, Lin J, Huang H Zhang . Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers.Journal of Materials Processing Technology, 2007, 189(1–3): 256–261
https://doi.org/10.1016/j.jmatprotec.2007.01.031
115 Y, Song D, Liu S, Hu et al.. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic.Journal of the European Ceramic Society, 2019, 39(4): 696–704
https://doi.org/10.1016/j.jeurceramsoc.2018.11.046
116 Y, Song D, Liu S, Hu et al.. Brazing of metallized SiC ceramic to GH99 superalloy using graphene nanoplatelets reinforced AgCuTi composite filler.Ceramics International, 2019, 45(7): 8962–8970
https://doi.org/10.1016/j.ceramint.2019.01.227
117 P, Wang Z, Xu X, Liu et al.. Regulating the interfacial reaction of Sc2W3O12/AgCuTi composite filler by introducing a carbon barrier layer.Carbon, 2022, 191: 290–300
https://doi.org/10.1016/j.carbon.2022.01.065
118 P, Wang X, Liu H, Wang et al.. Negative thermal expansion Y2Mo3O12 particles reinforced AgCuTi composite filler for brazing Cf/SiC and GH3536.Materials Characterization, 2022, 185: 111754
https://doi.org/10.1016/j.matchar.2022.111754
119 Z H, Karadeniz D Kumlutas . A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials.Composite Structures, 2007, 78(1): 1–10
https://doi.org/10.1016/j.compstruct.2005.11.034
120 W F, Ding J H, Xu Z Z, Chen et al.. Microstructure characteristics of cBN/steel joints brazed with TiB2 modified active filler.Materials Science and Technology, 2009, 25(12): 1448–1452
https://doi.org/10.1179/174328408X363353
121 W, Ding J, Xu Z, Chen et al.. A study on effects of TiB2 contents on reactive products and compressive strength of brazed CBN grains.Surface and Interface Analysis, 2009, 41(3): 238–243
https://doi.org/10.1002/sia.3013
122 S, Guo L, Sun Z, Zheng et al.. Microstructure and corrosion behavior of Si3N4/316L joints brazed with Ag–Cu/Ag/Mo/Ag/Ag–Cu–Ti multilayer filler.Electrochimica Acta, 2021, 379: 138193
https://doi.org/10.1016/j.electacta.2021.138193
123 P, Wang J, Lin Z, Xu et al.. Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536.Carbon, 2023, 201: 765–775
https://doi.org/10.1016/j.carbon.2022.09.072
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed