Rechargeable aqueous zinc-ion batteries (AZIBs) are the most promising candidates for the energy storage due to their high safety, rich resources, and large specific capacity. However, AZIBs using neutral or slightly acidic electrolytes still face side effects and zinc dendrites on the anode surface. To stabilize the Zn anode, a chemically stable and multi-functional coating of polyvinylidene fluoride (PVDF) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) was prepared on the Zn surface. The anhydride groups in 6FDA can improve the hydrophilicity, promoting the migration of zinc ions. Besides, PVDF is compatible with 6FDA because of the presence of organic F-containing groups, which can also effectively reduce the nucleation overpotential and exhibit the dendrite-free Zn deposition/stripping. The PVDF/6FDA@Zn symmetric cell can cycle for 5000 h at a current density of 0.5 mA·cm−2, maintaining the extremely low polarization voltage and overpotential of 28 and 8 mV, respectively. The PVDF/6FDA@Zn||MnO2 full cell can remain a specific capacity of ~90 mAh·g−1 after 2000 cycles at 1.5 A·g−1. This simple method achieves a reversible Zn anode, providing an inspiring strategy for ultra-long-cycle AZIBs.
H, Khalifa S A, El-Safty A, Reda et al.. One-dimensional hierarchical anode/cathode materials engineering for high-performance lithium-ion batteries.Energy Storage Materials, 2021, 37: 363–377 https://doi.org/10.1016/j.ensm.2021.02.016
2
Y, Zeng D, Chalise S D, Lubner et al.. A review of thermal physics and management inside lithium-ion batteries for high energy density and fast charging.Energy Storage Materials, 2021, 41: 264–288 https://doi.org/10.1016/j.ensm.2021.06.008
3
K, Chayambuka G, Mulder D L, Danilov et al.. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities.Advanced Energy Materials, 2020, 10(38): 2001310 https://doi.org/10.1002/aenm.202001310
4
X, Zhang Q, Sun C, Zhen et al.. Recent progress in flame-retardant separators for safe lithium-ion batteries.Energy Storage Materials, 2021, 37: 628–647 https://doi.org/10.1016/j.ensm.2021.02.042
Y, Liu L, Li X, Ji et al.. Scientific challenges and improvement strategies of Zn-based anodes for aqueous Zn-ion batteries.Chemical Record, 2022, 22(10): e202200114 https://doi.org/10.1002/tcr.202200114
7
F, Wang O, Borodin T, Gao et al.. Highly reversible zinc metal anode for aqueous batteries.Nature Materials, 2018, 17(6): 543–549 https://doi.org/10.1038/s41563-018-0063-z
8
H, Glatz E, Tervoort D Kundu . Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries.ACS Applied Materials & Interfaces, 2020, 12(3): 3522–3530 https://doi.org/10.1021/acsami.9b16125
9
H, Jia Z, Wang B, Tawiah et al.. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy, 2020, 70: 104523 https://doi.org/10.1016/j.nanoen.2020.104523
10
Y, Shang D Kundu . Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future.Batteries & Supercaps, 2022, 5(5): e202100394 https://doi.org/10.1002/batt.202100394
11
Z, Yang C, Lv W, Li et al.. Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode.Small, 2022, 18(43): 2104148 https://doi.org/10.1002/smll.202104148
J, Yang R, Zhao Y, Wang et al.. Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective.Advanced Functional Materials, 2023, 33(14): 2213510 https://doi.org/10.1002/adfm.202213510
14
Y, Hu Z, Li Z, Wang et al.. Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode.Advanced Science, 2023, 10(12): 2206995 https://doi.org/10.1002/advs.202206995
15
D, Li Z, Wei W, Lei et al.. In situ crosslinked hybrid aluminum polymer film for high-performance solid electrolyte interphase of lithium metal battery.Journal of Power Sources, 2023, 563: 232808 https://doi.org/10.1016/j.jpowsour.2023.232808
16
X, Wang C, Sun Z S Wu . Recent progress of dendrite-free stable zinc anodes for advanced zinc-based rechargeable batteries: fundamentals, challenges, and perspectives.SusMat, 2023, 3(2): 180–206 https://doi.org/10.1002/sus2.118
17
L F, Zhou T, Du J Y, Li et al.. A strategy for anode modification for future zinc-based battery application.Materials Horizons, 2022, 9(11): 2722–2751 https://doi.org/10.1039/D2MH00973K
18
W, Nie H, Cheng Q, Sun et al.. Design strategies toward high-performance Zn metal anode.Small Methods, 2023, 7: 2201572 https://doi.org/10.1002/smtd.202201572
19
Q, Ren X, Tang X, Zhao et al.. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes.Nano Energy, 2023, 109: 108306 https://doi.org/10.1016/j.nanoen.2023.108306
20
W, Guo Z, Cong Z, Guo et al.. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries.Energy Storage Materials, 2020, 30: 104–112 https://doi.org/10.1016/j.ensm.2020.04.038
21
L, Chladil O, Cech J, Smejkal et al.. Study of zinc deposited in the presence of organic additives for zinc-based secondary batteries.Journal of Energy Storage, 2019, 21: 295–300 https://doi.org/10.1016/j.est.2018.12.001
22
A, Mitha H, Mi W, Dong et al.. Thixotropic gel electrolyte containing poly (ethylene glycol) with high zinc ion concentration for the secondary aqueous Zn/LiMn2O4 battery.Journal of Electroanalytical Chemistry, 2019, 836: 1–6 https://doi.org/10.1016/j.jelechem.2019.01.014
23
X, Yang S, Liu J, Tang et al.. Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives.Journal of Materials Science, 2019, 54(4): 3536–3546 https://doi.org/10.1007/s10853-018-3069-7
24
A, Naveed H, Yang J, Yang et al.. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte.Angewandte Chemie International Edition, 2019, 58(9): 2760–2764 https://doi.org/10.1002/anie.201813223
25
F, Wang O, Borodin T, Gao et al.. Highly reversible zinc metal anode for aqueous batteries.Nature Materials, 2018, 17(6): 543–549 https://doi.org/10.1038/s41563-018-0063-z
26
Z, Zhao J, Zhao Z, Hu et al.. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase.Energy & Environmental Science, 2019, 12(6): 1938–1949 https://doi.org/10.1039/C9EE00596J
27
J, Zhao J, Zhang W, Yang et al.. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries.Nano Energy, 2019, 57: 625–634 https://doi.org/10.1016/j.nanoen.2018.12.086
28
P, Chen X, Yuan Y, Xia et al.. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries.Advanced Science, 2021, 8(11): 2100309 https://doi.org/10.1002/advs.202100309
29
X, Zeng K, Xie S, Liu et al.. Bio-inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA·cm−2 and 30 mAh·cm−2.Energy & Environmental Science, 2021, 14(11): 5947–5957 https://doi.org/10.1039/D1EE01851E
30
B, Niu Z, Li S, Cai et al.. Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors.Chemical Engineering Journal, 2022, 442: 136217 https://doi.org/10.1016/j.cej.2022.136217
31
L T, Hieu S, So I T, Kim et al.. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life.Chemical Engineering Journal, 2021, 411: 128584 https://doi.org/10.1016/j.cej.2021.128584
32
X, Wang X, Wang Y, Zhou et al.. In-situ construction of multifunctional protection interface for ultra-stable zinc anodes.Journal of Alloys and Compounds, 2023, 947: 169510 https://doi.org/10.1016/j.jallcom.2023.169510
33
T, Wei X, Zhang Y, Ren et al.. Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode.Chemical Engineering Journal, 2023, 457: 141272 https://doi.org/10.1016/j.cej.2023.141272
34
F, Tao K, Feng Y, Liu et al.. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries.Nano Research, 2023, 16(5): 6789–6797 https://doi.org/10.1007/s12274-022-5270-x
35
J, Hao X, Li S, Zhang et al.. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries.Advanced Functional Materials, 2020, 30(30): 2001263 https://doi.org/10.1002/adfm.202001263
36
X, Ge W, Zhang F, Song et al.. Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries.Advanced Functional Materials, 2022, 32(26): 2200429 https://doi.org/10.1002/adfm.202200429
37
Z, Zhang R, Wang J, Hu et al.. An in situ self-assembled 3D zincophilic heterogeneous metal layer on a zinc metal surface for dendrite-free aqueous zinc-ion batteries.Sustainable Energy & Fuels, 2021, 5(22): 5843–5850 https://doi.org/10.1039/D1SE01317C
38
C, Xie Y, Li Q, Wang et al.. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review.Carbon Energy, 2020, 2(4): 540–560 https://doi.org/10.1002/cey2.67
39
S, Lee G, Song S, Kim et al.. Ion-selective and chemical-protective elastic block copolymer interphase for durable zinc metal anode.Cell Reports Physical Science, 2022, 3(10): 101070 https://doi.org/10.1016/j.xcrp.2022.101070
40
R, Zhao J, Yang X, Han et al.. Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries.Advanced Energy Materials, 2023, 13(8): 2203542 https://doi.org/10.1002/aenm.202203542