Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2024, Vol. 18 Issue (2): 240679   https://doi.org/10.1007/s11706-024-0679-7
  本期目录
A review of inorganic particles synthesized through electrical discharge in different dielectric media: from devices, structures and components to applications
Yifan Liu1,2(), Guilu Qin1, Liangjun Yin1,2, Xian Jian1,2, Xianglong Li3()
1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
2. Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
3. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(9497 KB)   HTML
Abstract

Size effects and compositions constitute new properties for inorganic particles in different application fields. The physical method has recently attracted more attention in the preparation of inorganic materials. Herein, a low-cost, eco-friendly, simple-operating, and time-saving technique, named electrical discharge, is reviewed in relation to developments from the nature of this technique in different dielectric media to the practical experience in controlling the main processing parameters, apparatuses, types of discharge, from the various structures and components to the wide applications. The development of the electrical discharge technique will play an important role in improving the technology to prepare superfine inorganic particles with high purity. Meanwhile, electrical discharge contributes to easily mixing solid materials from the atomic scale to several micrometers with different structures. Moreover, metal oxides or doping materials are accessible as the dielectric medium is changed. Considering some excellent advantages, new inorganic particles exploited through the electrical discharge method will promise to be the most rewarding in some potential applications.

Key wordselectrical discharge    gas/liquid-phase dielectric medium    inorganic particle    size and composition    application
收稿日期: 2023-07-03      出版日期: 2024-06-07
Corresponding Author(s): Yifan Liu,Xianglong Li   
 引用本文:   
. [J]. Frontiers of Materials Science, 2024, 18(2): 240679.
Yifan Liu, Guilu Qin, Liangjun Yin, Xian Jian, Xianglong Li. A review of inorganic particles synthesized through electrical discharge in different dielectric media: from devices, structures and components to applications. Front. Mater. Sci., 2024, 18(2): 240679.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-024-0679-7
https://academic.hep.com.cn/foms/CN/Y2024/V18/I2/240679
Fig.1  
TypeCurrent/AVoltage/VGap size/mmFrequency/kHzMedium
Spark discharge0?0.020 (LC)2000?3000 (HV)20?0.300Gas phase
DC arc discharge0.080 (LC)15000 (HV)0.100 ± 0.0100.003Liquid
DC arc discharge90?150 (HC)10?30 (LV)1?2?Gas phase
Pulse discharge10?50 (MC)10?60 (LV)0.04520Water
DC arc welding90?150 (HC)10?30 (LV)1?2?Gas
Tab.1  
Fig.2  
Fig.3  
SampleDischarge typeMediumGas flow rate||PressureCurrent/AVoltage/VGap size/mmRef.
AgSparkAr15?18 lpm||1 atm5 × 10?36000.5[80]
AuSparkAr, He, N20.8?10 lpm||1?2 bar5 × 10?518000.5?1[22]
Au/AgSparkAr5 L·min?1???[81]
PtSparkAr, N2, air3.5 L·min?1||2 bar23000.7?3[82]
PdSparkAr2?8 L·min?1?20002[83]
GdDC arcH2, Ar?70??[84]
GeSparkAr1.5 bar?1500?[85?86]
Pt@MoCArcH20.08?MPa80?2[87]
AgArcWater, EG?6.4?140120?135?[8894]
AuArcEthanol, water?6.4?140135?[27,45,95?96]
ZrDC arcWater?40–160??[97]
MgSparkAr1 lpm0.012?2[98]
AlArcAr/O240 slpm||0 torr?1 atm1550?[99]
SiArcLiquid N220701[100]
CuArcWater?50?160251[98,101]
CuMicro-arcWater?2301[102]
NiPulse arcDI water??100?[103]
Fe/CoAC arcWater, paraffin solutions?5?101?[61]
Tab.2  
Fig.4  
Fig.5  
Fig.6  
SampleDischarge typeMediumGas flow rate||PressureCurrent/AVoltage/VGap size/mmRef.
NiAlPulsed sparkN25–100 kPa?3000–60001[114]
Mg?AlArcAr/He8 L·min?110012?24?[115?116]
Ni0.5Zn0.5Fe2O4ArcOxygen1?atm400??[117]
Sn?BiSparkAr/N2100 kPa?2000?6000?[118]
Fe–GaSparkLiquid Ar???[119]
Mn?BiSparkLiquid N2????[20]
Sn?FeDC-arc dischargeAr/H20.05 MPa30035?[120]
Au?GeSparkAr2 slm||1 atm0.01041001[121]
Au–PtSparkAr2 slm||1atm0.01041001[122]
Cu?NiSparkN22 L·min?10.006?3[123]
Fe90/Tb10ArcAr20 kPa20?8020?24?[124]
Ag?CuPulse arcWater, ethanol?2.3?6.4100?1400.030[125]
Cu–ZnDC arcEG, ethanol, and DI water?525.61[126]
Ni52.6Mn29.8Ga17.6Pulsed sparkLiquid Ar or N2????[127130]
p-Type Bi?Sb?TePulsed sparkLiquid N2????[46]
Ni49.87Ti40.25Hf9.44Zr0.30Cu0.14Pulsed sparkAr + H2 (1:4)?100??[131]
Nd2(FeCo)14B/α-FeCo?Liquid Ar????[132]
Pr6.93Fe85.7B5.95Nb1.39?Liquid Ar????[21]
FeCoNiTiMnArcCH4 + Ar (2:1)?23066?[133]
CuInSe2Pulsed sparkEthanol?60850010[63]
Tab.3  
Fig.7  
SampleDischarge typeMediumGas flow rate||PressureCurrent/AVoltage/VGap size/mmRef.
C-MgOArcHe/O225?Torr12022?[134]
MgO2ArcAr/O220 kPa90?2?3[135]
SnO2ArcAr/O240 kPa90?2?3[136]
SnO2Mini-arcAr/O2?30?4030.5[137]
TiO2SparkAr/O23 L·min?1??[138]
Cu2OMulti-sparkAir0–160 L·min?1500?100000.5?6[139?140]
Al2O3Multi-sparkAir0–160 L·min?1500?100000.5?6[139?140]
CuOPulsed sparkAir3–15 L·min?1??10?30[141]
γ-Fe2O3DC-arcAir?90?2[142]
Fe3O4ArcO2?74?2[143]
MoS2Pulsed arcHe300 Torr250?300356–7[144]
Fe@ZrO2ArcH2/Ar?O2?15030?[145]
Cu@ZnO/Cu2O@ZnOSparkLiquid N2?0.080100000.1[146]
NiO/CoOPulsed sparkWater??5000?200002[147]
Fe3O4ArcWater60202[148]
γ-Fe2O3ArcWater35833[149]
WO3, ZrO2, ZnOArcWater/ethanol5?451.5?4?[33,150156]
TiO2ArcWater0?2550?140?[157?158]
CuO@Ta2O5ArcWater3583?[159?160]
Bi@Bi2O3ArcWater5?20?2–3[161]
MoS2ArcWater40??[162]
CuIPulsed arcWater/iodine?211400.03[163]
Tab.4  
Fig.8  
SampleDischarge typeMediumGas flow rate||PressureCurrent/AVoltage/VGap size/mmRef.
Fe@C, Co@C, Ni@CArcN20.01?0.06 MPa500?80025?30[168?169]
M@C (M: Ru, Rh, Pd, Os, Ir, Pt)ArcHe100?600 Torr70251?2[170]
Cu@CArcHe/H2400 Torr120?2[171]
AU@C, Cu@C, Fe@CArcHe/CH4100 Torr120201[172?173]
Cu@C, Au@CArcHe/CH4/NH3100 Torr120201[174176]
Ag@CArcHe/NH3?12020?[177]
FeCo@CArcCH4????[24,178]
N-doped NiFe@CArcCH4/N2/Ar0.06 MPa100??[179]
FeCoNiTiMn@CArcCH4/Ar5 × 10?3 Pa23066?[133]
Fe2O3@CArcCH4/Ar0.03 MPa10020?[180]
TiO2@graphite oxideArc95% N2?4.5% CO2?0.5% O2200 Torr2.8×10?33600?[181]
Ni@CArcHe/cyclohexane, benzene, ethanol, N-propanol, 2-propanol?10020?25?[182]
Fe@C/Co@CArcBenzene/ethanol?255?[183]
Cu@CNanosecond pulsed sparkToluene cyclohexane N-heptane?2050000.01[184]
FeSn2@CArcAr + H2/ethanol0.03 MPa2040?[185]
Tab.5  
Fig.9  
SampleDischarge typeMediumGas flow rate||PressureCurrent/AVoltage/VGap size/mmRef.
TiC/TiN/TiCNArcN2 + Ar + CH410 slm N2 + 10 slm Ar + 3 sccm CH42030?[51]
Mg?Al?CArcHe25 Torr12020?[187]
SiCArcCO?CO2?70?200351[188191]
TiNArcLiquid N2?5?30??[192]
AlNArcLiquid N2?5?30??[192]
Ce-doped AlNArcNH33 kPa9040?[193]
TiCDC arcMethanol, ethanol, acetone?40??[194]
WC?10CoPulsed dischargeKerosene, water, ethanol????[196198]
B@FeArcDiborane?120–160??[195]
Tab.6  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 M, Vaezi H, Seitz S F Yang . A review on 3D micro-additive manufacturing technologies.International Journal of Advanced Manufacturing Technology, 2013, 67(5–8): 1721–1754
https://doi.org/10.1007/s00170-012-4605-2
2 M X, Wu G, Yang J, Liu et al.. Densification mechanism of copper micro-components prepared by the micro-forming fields activated sintering technology.Journal of Alloys and Compounds, 2017, 692: 434–439
https://doi.org/10.1016/j.jallcom.2016.09.101
3 Y Y, Zhang R, Ma S H, Feng et al.. Microstructures and magnetic properties of Fe–35%Co alloy fabricated by metal injection molding.Journal of Magnetism and Magnetic Materials, 2020, 497: 165982
https://doi.org/10.1016/j.jmmm.2019.165982
4 J D, Ma M L, Qin X, Wang et al.. Microstructure and magnetic properties of Fe‒79%Ni‒4%Mo alloy fabricated by metal injection molding.Powder Technology, 2014, 253: 158–162
https://doi.org/10.1016/j.powtec.2013.11.011
5 Q J, Huang Y Zhu . Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications.Advanced Materials Technologies, 2019, 4(5): 1800546
https://doi.org/10.1002/admt.201800546
6 N, Zavanelli W H Yeo . Advances in screen printing of conductive nanomaterials for stretchable electronics.ACS Omega, 2021, 6(14): 9344–9351
https://doi.org/10.1021/acsomega.1c00638
7 R, Sharma P, Thakur P, Sharma et al.. Ferrimagnetic Ni2+ doped Mg‒Zn spinel ferrite nanoparticles for high density information storage.Journal of Alloys and Compounds, 2017, 704: 7–17
https://doi.org/10.1016/j.jallcom.2017.02.021
8 D, Gudovan P C, Balaure D E, Mihaiescu et al.. Functionalized magnetic nanoparticles for biomedical applications.Current Pharmaceutical Design, 2015, 21(42): 6038–6054
https://doi.org/10.2174/1381612821666151027151702
9 Y Z, Chen Q, Xu S H, Yu et al.. Tiny Pd@Co core‒shell nanoparticles confined inside a metal‒organic framework for highly efficient catalysis.Small, 2015, 11(1): 71–76
https://doi.org/10.1002/smll.201401875
10 H, Shao C, Chen T, Liu et al.. Phase, microstructure and hydrogen storage properties of Mg‒Ni materials synthesized from metal nanoparticles.Nanotechnology, 2014, 25(13): 135704
https://doi.org/10.1088/0957-4484/25/13/135704
11 S J, Joo H J, Hwang H S Kim . Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.Nanotechnology, 2014, 25(26): 265601
https://doi.org/10.1088/0957-4484/25/26/265601
12 W H, Luo W Y, Hu S F Xiao . Size effect on the thermodynamic properties of silver nanoparticles.The Journal of Physical Chemistry C, 2008, 112(7): 2359–2369
https://doi.org/10.1021/jp0770155
13 O, Ivanova C, Williams T Campbell . Additive manufacturing (AM) and nanotechnology: promises and challenges.Rapid Prototyping Journal, 2013, 19(5): 353–364
https://doi.org/10.1108/RPJ-12-2011-0127
14 Y Y, Dai M Z, Ng P, Anantha et al.. Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects.Applied Physics Letters, 2016, 108(26): 263103
https://doi.org/10.1063/1.4954966
15 P K, Singh P, Kumar A K Das . Unconventional physical methods for synthesis of metal and non-metal nanoparticles: a review.Proceedings of the National Academy of Sciences India. Section A: Physical Sciences, 2019, 89(2): 199–221
https://doi.org/10.1007/s40010-017-0474-2
16 N Sano . Synthesis of carbon nanotubes and related nanoparticles by submerged arc discharge. Chimica Oggi-Chemistry Today, 2004, 22(11‒12): 54–56
17 A E, Berkowitz J L Walter . Spark erosion: a method for producing rapidly quenched fine powders.Journal of Materials Research, 1987, 2: 277–288
https://doi.org/10.1557/JMR.1987.0277
18 S, Schwyn E, Garwin A Schmidt-Ott . Aerosol generation by spark discharge.Journal of Aerosol Science, 1988, 19(5): 639–642
https://doi.org/10.1016/0021-8502(88)90215-7
19 H, Zeng L, Zhu G M, Hao et al.. Synthesis of various forms of carbon nanotubes by AC arc discharge.Carbon, 1998, 36(3): 259–261
https://doi.org/10.1016/S0008-6223(97)00167-X
20 P K, Nguyen S H, Jin A E Berkowitz . MnBi particles with high energy density made by spark erosion.Journal of Applied Physics, 2014, 115(17): 17A756
https://doi.org/10.1063/1.4868330
21 M F, Hansen K S, Vecchio F T, Parker et al.. Exchange-spring permanent magnet particles produced by spark-erosion.Applied Physics Letters, 2003, 82(10): 1574–1576
https://doi.org/10.1063/1.1560559
22 N S, Tabrizi M, Ullmann V A, Vons et al.. Generation of nanoparticles by spark discharge.Journal of Nanoparticle Research, 2009, 11(2): 315–332
https://doi.org/10.1007/s11051-008-9407-y
23 S, Bau O, Witschger F, Gensdarmes et al.. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator.Journal of Nanoparticle Research, 2010, 12(6): 1989–1995
https://doi.org/10.1007/s11051-010-9856-y
24 X C, Sun A, Gutierrez M J, Yacaman et al.. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni.Materials Science and Engineering A, 2000, 286(1): 157–160
https://doi.org/10.1016/S0921-5093(00)00628-6
25 Q Q, Fu D, Kokalj D, Stangier et al.. Aerosol synthesis of titanium nitride nanoparticles by direct current arc discharge method.Advanced Powder Technology, 2020, 31(9): 4119–4128
https://doi.org/10.1016/j.apt.2020.08.012
26 Q, Fu M, Stein W, Li et al.. Conductive films prepared from inks based on copper nanoparticles synthesized by transferred arc discharge.Nanotechnology, 2020, 31(2): 025302
https://doi.org/10.1088/1361-6528/ab4524
27 K H, Tseng M Y, Chung C Y Chang . Parameters for fabricating nano-Au colloids through the electric spark discharge method with micro-electrical discharge machining.Nanomaterials, 2017, 7(6): 133
https://doi.org/10.3390/nano7060133
28 Y F, Liu X L, Li Y, Li et al.. The formation mechanism and morphology of the nickel particles by the ultrasound-aided spark discharge in different liquid media.Advanced Powder Technology, 2016, 27(6): 2399–2408
https://doi.org/10.1016/j.apt.2016.08.016
29 H, Förster C, Wolfrum W Peukert . Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process.Journal of Nanoparticle Research, 2012, 14(7): 926
https://doi.org/10.1007/s11051-012-0926-1
30 J P, Borra A, Goldman M, Goldman et al.. Electrical discharge regimes and aerosol production in point-to-plane DC high-pressure cold plasmas: aerosol production by electrical discharges.Journal of Aerosol Science, 1998, 29(5–6): 661–674
https://doi.org/10.1016/S0021-8502(97)00453-9
31 B, Buesser S E Pratsinis . Design of nanomaterial synthesis by aerosol processes.Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1): 103–127
https://doi.org/10.1146/annurev-chembioeng-062011-080930
32 S R, Noh D S, Kim S J, Park et al.. Enhanced yield of positively charged particles from a spark discharge generator via corona discharges.Journal of Aerosol Science, 2016, 101: 188–195
https://doi.org/10.1016/j.jaerosci.2016.08.003
33 A A Ashkarran . Metal and metal oxide nanostructures prepared by electrical arc discharge method in liquids.Journal of Cluster Science, 2011, 22(2): 233–266
https://doi.org/10.1007/s10876-011-0376-4
34 J P Borra . Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration.Journal of Physics D: Applied Physics, 2006, 39(2): 19–54
https://doi.org/10.1088/0022-3727/39/2/R01
35 K, Albinski K, Musiol A, Miernikiewicz et al.. The temperature of a plasma used in electrical discharge machining.Plasma Sources Science & Technology, 1996, 5(4): 736–742
https://doi.org/10.1088/0963-0252/5/4/015
36 R, Reinmann M Akram . Temporal investigation of a fast spark discharge in chemically inert gases.Journal of Physics D: Applied Physics, 1997, 30(7): 1125–1134
https://doi.org/10.1088/0022-3727/30/7/010
37 D D, DiBitonto P T, Eubank M R, Patel et al.. Theoretical models of the electrical discharge machining process.I. A simple cathode erosion model. Journal of Applied Physics, 1989, 66(9): 4095–4103
https://doi.org/10.1063/1.343994
38 P T, Eubank M R, Patel M A, Barrufet et al.. Theoretical-models of the electrical-discharge machining process.III. The variable mass, cylindrical plasma model. Journal of Applied Physics, 1993, 73(11): 7900–7909
https://doi.org/10.1063/1.353942
39 M R, Patel M A, Barrufet P T, Eubank et al.. Theoretical models of the electrical discharge machining process.II. The anode erosion model. Journal of Applied Physics, 1989, 66(9): 4104–4111
https://doi.org/10.1063/1.343995
40 J P, Borra N, Jidenko J, Hou et al.. Vaporization of bulk metals into single-digit nanoparticles by non-thermal plasma filaments in atmospheric pressure dielectric barrier discharges.Journal of Aerosol Science, 2015, 79: 109–125
https://doi.org/10.1016/j.jaerosci.2014.09.002
41 A, Hamdan C, Noël J, Ghanbaja et al.. Comparison of aluminium nanostructures created by discharges in various dielectric liquids.Plasma Chemistry and Plasma Processing, 2014, 34(5): 1101–1114
https://doi.org/10.1007/s11090-014-9564-y
42 F E, Kruis H, Fissan A Peled . Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications — a review.Journal of Aerosol Science, 1998, 29(5–6): 511–534
https://doi.org/10.1016/S0021-8502(97)10032-5
43 X, Duten D, Packan L, Yu et al.. DC and pulsed glow discharges in atmospheric pressure air and nitrogen.IEEE Transactions on Plasma Science, 2002, 30(1): 178–179
https://doi.org/10.1109/TPS.2002.1003982
44 N S, Tabrizi Q, Xu der Pers N M, van et al.. Synthesis of mixed metallic nanoparticles by spark discharge.Journal of Nanoparticle Research, 2009, 11(5): 1209–1218
https://doi.org/10.1007/s11051-008-9568-8
45 K H, Tseng J C Huang . Pulsed spark-discharge assisted synthesis of colloidal gold nanoparticles in ethanol.Journal of Nanoparticle Research, 2011, 13(7): 2963–2972
https://doi.org/10.1007/s11051-010-0187-9
46 P K, Nguyen K H, Lee J, Moon et al.. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance.Nanotechnology, 2012, 23(41): 415604
https://doi.org/10.1088/0957-4484/23/41/415604
47 E, Hontañón J M, Palomares M, Stein et al.. The transition from spark to arc discharge and its implications with respect to nanoparticle production.Journal of Nanoparticle Research, 2013, 15(9): 1957
https://doi.org/10.1007/s11051-013-1957-y
48 T, Belmonte A, Hamdan F, Kosior et al.. Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis.Journal of Physics D: Applied Physics, 2014, 47(22): 224016
https://doi.org/10.1088/0022-3727/47/22/224016
49 F Z, Han S, Wachi M Kunieda . Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control.Precision Engineering, 2004, 28(4): 378–385
https://doi.org/10.1016/j.precisioneng.2003.11.005
50 F Z, Han L, Chen D W, Yu et al.. Basic study on pulse generator for micro-EDM.International Journal of Advanced Manufacturing Technology, 2007, 33(5–6): 474–479
https://doi.org/10.1007/s00170-006-0483-9
51 D, Kiesler T, Bastuck R, Theissmann et al.. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium.Journal of Nanoparticle Research, 2015, 17(3): 152
https://doi.org/10.1007/s11051-015-2967-8
52 M, Stein D, Kiesler F E Kruis . Effect of carrier gas composition on transferred arc metal nanoparticle synthesis.Journal of Nanoparticle Research, 2013, 15(1): 1400
https://doi.org/10.1007/s11051-012-1400-9
53 J Y, Yu J, Gao F H, Xue et al.. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge.RSC Advances, 2015, 5(84): 68714–68721
https://doi.org/10.1039/C5RA11738K
54 S, Gao H, Huang A M, Wu et al.. Formation of Sn‒M (M = Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries.Journal of Solid State Chemistry, 2016, 242: 127–135
https://doi.org/10.1016/j.jssc.2016.07.003
55 J J, Cole E C, Lin C R, Barry et al.. Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge.Applied Physics Letters, 2009, 95(11): 113101
https://doi.org/10.1063/1.3197646
56 N Sano . Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene.Materials Chemistry and Physics, 2004, 88(2–3): 235–238
https://doi.org/10.1016/j.matchemphys.2004.07.018
57 M, Stein F E Kruis . Optimization of a transferred arc reactor for metal nanoparticle synthesis.Journal of Nanoparticle Research, 2016, 18(9): 258
https://doi.org/10.1007/s11051-016-3559-y
58 X L, Dong Z D, Zhang Q F, Xiao et al.. Characterization of ultrafine γ-Fe(C), α-Fe(C) and Fe3C particles synthesized by arc-discharge in methane.Journal of Materials Science, 1998, 33(7): 1915–1919
https://doi.org/10.1023/A:1004369708540
59 M, Farajimotlagh R, Poursalehi M Aliofkhazraei . Synthesis mechanisms, optical and structural properties of η-Al2O3 based nanoparticles prepared by DC arc discharge in environmentally friendly liquids.Ceramics International, 2017, 43(10): 7717–7723
https://doi.org/10.1016/j.ceramint.2017.03.075
60 N, Parkansky O, Goldstein B, Alterkop et al.. Features of micro and nano-particles produced by pulsed arc submerged in ethanol.Powder Technology, 2006, 161(3): 215–219
https://doi.org/10.1016/j.powtec.2005.09.005
61 J A, Jaworski E Fleury . Sub-micrometer particles produced by a low-powered AC electric arc in liquids.Journal of Nanoscience and Nanotechnology, 2012, 12(1): 604–609
https://doi.org/10.1166/jnn.2012.5351
62 E, Omurzak J, Jasnakunov N, Mairykova et al.. Synthesis method of nanomaterials by pulsed plasma in liquid.Journal of Nanoscience and Nanotechnology, 2007, 7(9): 3157–3159
https://doi.org/10.1166/jnn.2007.804
63 M, Mardanian A A, Nevar M, Nedel’ko et al.. Synthesis of colloidal CuInSe nanoparticles by electrical spark discharge in liquid.European Physical Journal D, 2013, 67(10): 208
https://doi.org/10.1140/epjd/e2013-40278-y
64 A, Zaikovskii I, Yudin D, Kozlachkov et al.. Gas pressure control of electric arc synthesis of composite Sn‒SnO2‒C nanomaterials.Vacuum, 2022, 195: 110694
https://doi.org/10.1016/j.vacuum.2021.110694
65 A A, Efimov V V, Ivanov A V, Bagazeev et al.. Generation of aerosol nanoparticles by the multi-spark discharge generator.Technical Physics Letters, 2013, 39(12): 1053–1056
https://doi.org/10.1134/S1063785013120067
66 V V, Ivanov A A, Efimov D A, Mylnikov et al.. High-efficiency synthesis of nanoparticles in a repetitive multigap spark discharge generator.Technical Physics Letters, 2016, 42(8): 876–878
https://doi.org/10.1134/S106378501608023X
67 T V, Pfeiffer J, Feng A Schmidt-Ott . New developments in spark production of nanoparticles.Advanced Powder Technology, 2014, 25(1): 56–70
https://doi.org/10.1016/j.apt.2013.12.005
68 K A, Kusters S E, Pratsinis S G, Thoma et al.. Energy-size reduction laws for ultrasonic fragmentation.Powder Technology, 1994, 80(3): 253–263
https://doi.org/10.1016/0032-5910(94)02852-4
69 M, Aoki T A, Ring J S Haggerty . Analysis and modeling of the ultrasonic dispersion technique.Advanced Ceramic Materials, 1987, 2(3A): 209–212
https://doi.org/10.1111/j.1551-2916.1987.tb00082.x
70 S, Shahidi A, Jamali S D, Sharifi et al.. In-situ synthesis of CuO nanoparticles on cotton fabrics using spark discharge method to fabricate antibacterial textile.Journal of Natural Fibers, 2018, 15(6): 870–881
https://doi.org/10.1080/15440478.2017.1376302
71 H, Ghomi M, Yousefi N, Shahabi et al.. Ultrasonic-assisted spark plasma discharge for gold nanoparticles synthesis.Radiation Effects and Defects in Solids, 2013, 168(11–12): 881–891
https://doi.org/10.1080/10420150.2013.778855
72 A, Jamali S, Razavizadeh A, Aliahmadi et al.. Antibacterial activity of silver and zinc oxide nanoparticles produced by spark discharge in deionized water.Contributions to Plasma Physics, 2017, 57(8): 316–321
https://doi.org/10.1002/ctpp.201600021
73 R, Sergiienko E, Shibata A, Zentaro et al.. Formation and characterization of graphite-encapsulated cobalt nanoparticles synthesized by electric discharge in an ultrasonic cavitation field of liquid ethanol.Acta Materialia, 2007, 55(11): 3671–3680
https://doi.org/10.1016/j.actamat.2007.02.017
74 Y F, Liu K L, Zhu X L, Li et al.. Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water.Advanced Powder Technology, 2018, 29(4): 863–873
https://doi.org/10.1016/j.apt.2018.01.003
75 F M, Lin Y F, Liu Q L, Hou et al.. The effect of focused ultrasonic power on particles produced by the ultrasonic-assisted electrical discharge process.Materials Research Express, 2019, 6(8): 0850d1
https://doi.org/10.1088/2053-1591/ab2486
76 T, Prozorov R, Prozorov K S Suslick . High velocity interparticle collisions driven by ultrasound.Journal of the American Chemical Society, 2004, 126(43): 13890–13891
https://doi.org/10.1021/ja049493o
77 N, Nersessian S W, Or G P, Carman et al.. Hollow and solid spherical magnetostrictive particulate composites.Journal of Applied Physics, 2004, 96(6): 3362–3365
https://doi.org/10.1063/1.1775303
78 A E, Berkowitz H, Harper D J, Smith et al.. Hollow metallic microspheres produced by spark erosion.Applied Physics Letters, 2004, 85(6): 940–942
https://doi.org/10.1063/1.1779962
79 A M, Boies P Y, Lei S, Calder et al.. Hot-wire synthesis of gold nanoparticles.Aerosol Science and Technology, 2011, 45(5): 654–663
https://doi.org/10.1080/02786826.2010.551145
80 A, Maisser K, Barmpounis S, Holm et al.. Characterization of atmospheric-pressure spark generated atomic silver and gold clusters by time-of-flight mass spectrometry.Journal of Aerosol Science, 2021, 156: 105780
https://doi.org/10.1016/j.jaerosci.2021.105780
81 A, Kohut A, Kéri V, Horváth et al.. Facile and versatile substrate fabrication for surface enhanced Raman spectroscopy using spark discharge generation of Au/Ag nanoparticles.Applied Surface Science, 2020, 531: 147268
https://doi.org/10.1016/j.apsusc.2020.147268
82 A A, Efimov P V, Arsenov V I, Borisov et al.. Synthesis of nanoparticles by spark discharge as a facile and versatile technique of preparing highly conductive Pt nano-ink for printed electronics.Nanomaterials, 2021, 11(1): 234
https://doi.org/10.3390/nano11010234
83 M E, Messing R, Westerström B O, Meuller et al.. Generation of Pd model catalyst nanoparticles by spark discharge.The Journal of Physical Chemistry C, 2010, 114(20): 9257–9263
https://doi.org/10.1021/jp101390a
84 G, Monastyrsky P, Ochin G Y, Wang et al.. Structure and composition of titanium spark erosion powder obtained in liquid nitrogen.Chemistry of Metals and Alloys, 2011, 4(1–2): 126–142
https://doi.org/10.30970/cma4.0178
85 D, Malo A A, Lizunova A A, Ramanenka et al.. Near-infrared photoluminescence and micro-Raman study of spark discharge germanium nanoparticles.Journal of Physics: Conference Series, 2020, 1695(1): 012123
https://doi.org/10.1088/1742-6596/1695/1/012123
86 A, Lizunova A, Mazharenko B, Masnaviev et al.. Effects of temperature on the morphology and optical properties of spark discharge germanium nanoparticles.Materials, 2020, 13(19): 4431
https://doi.org/10.3390/ma13194431
87 Q, Bi X, Yuan Y, Lu et al.. One-step high-temperature-synthesized single-atom platinum catalyst for efficient selective hydrogenation.Research, 2020, 2020: UNSP 9140841
https://doi.org/10.34133/2020/9140841
88 D C, Tien K H, Tseng C Y, Liao et al.. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method.Journal of Alloys and Compounds, 2008, 463(1–2): 408–411
https://doi.org/10.1016/j.jallcom.2007.09.048
89 H Q, Zhang G S, Zou L, Liu et al.. Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging.Journal of Materials Science, 2017, 52(6): 3375–3387
https://doi.org/10.1007/s10853-016-0626-9
90 C H, Lo T T, Tsung H M Lin . Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS).Journal of Alloys and Compounds, 2007, 434–435: 659–662
https://doi.org/10.1016/j.jallcom.2006.08.217
91 K H, Tseng H L, Lee C Y, Liao et al.. Rapid and efficient synthesis of silver nanofluid using electrical discharge machining.Journal of Nanomaterials, 2013, 2013: 174939
https://doi.org/10.1155/2013/174939
92 K H, Tseng M Y, Chung C Y, Chang et al.. Parameter optimization of nanosilver colloid prepared by electrical spark discharge method using Ziegler‒Nichols method.Journal of Physics and Chemistry of Solids, 2021, 148: 109650
https://doi.org/10.1016/j.jpcs.2020.109650
93 K H, Tseng C Y, Liao D C Tien . Silver carbonate and stability in colloidal silver: a by-product of the electric spark discharge method.Journal of Alloys and Compounds, 2010, 493(1–2): 438–440
https://doi.org/10.1016/j.jallcom.2009.12.121
94 K H, Tseng H C, Ku D C, Tien et al.. Novel preparation of reduced graphene oxide‒silver complex using an electrical spark discharge method.Nanomaterials, 2019, 9(7): 979
https://doi.org/10.3390/nano9070979
95 K H, Tseng C Y, Liao J C, Huang et al.. Characterization of gold nanoparticles in organic or inorganic medium (ethanol/water) fabricated by spark discharge method.Materials Letters, 2008, 62(19): 3341–3344
https://doi.org/10.1016/j.matlet.2008.02.056
96 K H, Tseng J C, Huang C Y, Liao et al.. Preparation of gold ethanol colloid by the arc discharge method.Journal of Alloys and Compounds, 2009, 472(1–2): 446–450
https://doi.org/10.1016/j.jallcom.2008.04.084
97 R, Peymani R, Poursalehi A Yourdkhani . DC arc discharge synthesized zirconia nanoparticles: shed light on arc current effects on size, crystal structure, optical properties and formation mechanism.Materials Research Express, 2019, 6(7): 075002
https://doi.org/10.1088/2053-1591/ab123f
98 K H, Tseng H C, Ke H C Ku . Parameters and properties for the preparation of Cu nanocolloids containing polyvinyl alcohol using the electrical spark discharge method.Nanomaterials and Nanotechnology, 2021, 11: 18479804211035190
https://doi.org/10.1177/18479804211035190
99 J Haidar . Synthesis of Al nanopowders in an anodic arc.Plasma Chemistry and Plasma Processing, 2009, 29(4): 307–319
https://doi.org/10.1007/s11090-009-9178-y
100 M, Kobayashi S M, Liu S, Sato et al.. Optical evaluation of silicon nanoparticles prepared by arc discharge method in liquid nitrogen.Japanese Journal of Applied Physics Part 1, 2006, 45(8a): 6146–6152
https://doi.org/10.1143/jjap.45.6146
101 M Z, Kassaee F, Buazar E Motamedi . Effects of current on arc fabrication of Cu nanoparticles.Journal of Nanomaterials, 2010, 2010: 403197
https://doi.org/10.1155/2010/403197
102 R K, Sahu S S, Hiremath P V, Manivannan et al.. Generation and characterization of copper nanoparticles using micro-electrical discharge machining.Materials and Manufacturing Processes, 2014, 29(4): 477–486
https://doi.org/10.1080/10426914.2013.872263
103 R, Ramos B, Valdez N, Nedev et al.. Electric discharge synthesis of nickel nanoparticles with virtual instrument control.Instrumentation Science & Technology, 2021, 49(5): 499–508
https://doi.org/10.1080/10739149.2021.1888115
104 V A, Vons A, Anastasopol W J, Legerstee et al.. Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles.Acta Materialia, 2011, 59(8): 3070–3080
https://doi.org/10.1016/j.actamat.2011.01.047
105 R K, Sahu S S, Hiremath P V Manivannan . Ultrasonic technique for concentration characterization of copper nanofluids synthesized using μ-EDM: a novel experimental approach.Powder Technology, 2015, 284: 429–436
https://doi.org/10.1016/j.powtec.2015.07.012
106 P, Kumar P K, Singh D, Kumar et al.. A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes.Materials and Manufacturing Processes, 2017, 32(5): 564–572
https://doi.org/10.1080/10426914.2016.1244832
107 X, Yu F, Xue H, Huang et al.. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries.Nanoscale, 2014, 6(12): 6860–6865
https://doi.org/10.1039/C3NR06418B
108 B A, Timerkaev B R, Shakirov D B Timerkaeva . Creation of silicon nanostructures in electric arc discharge.High Energy Chemistry, 2019, 53(2): 162–166
https://doi.org/10.1134/S0018143919020152
109 W, Zhang J, Hong W Wang . Preparation of silicon nanoparticles by pulse erosion and analysis with molecule dynamic simulation.Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9882–9888
https://doi.org/10.1166/jnn.2016.12374
110 W, Zhang A, Farooq W Wang . Generating silicon nanoparticles using spark erosion by flushing high-pressure deionized water.Materials and Manufacturing Processes, 2016, 31(2): 113–118
https://doi.org/10.1080/10426914.2014.984199
111 S M, Liu M, Kobayashi S, Sato , et al.. Synthesis of silicon nanowires and nanoparticles by arc-discharge in water. Chemical Communications, 2005, 4690–4692
112 M, Mardanian N V, Tarasenko A A Nevar . Influence of liquid medium on optical characteristics of the Si nanoparticles prepared by submerged electrical spark discharge.Brazilian Journal of Physics, 2014, 44(2–3): 240–246
https://doi.org/10.1007/s13538-013-0175-5
113 A S Barnard . Modelling of nanoparticles: approaches to morphology and evolution.Reports on Progress in Physics, 2010, 73(8): 086502
https://doi.org/10.1088/0034-4885/73/8/086502
114 S, Nagasawa T, Koishi Y, Tokoi et al.. Determining factor of median diameter in intermetallic compound nanoparticles prepared by pulsed wire discharge.Japanese Journal of Applied Physics, 2014, 53(2S): 02BD07
https://doi.org/10.7567/JJAP.53.02BD07
115 M K, Akbari R, Derakhshan O Mirzaee . A case study in vapor phase synthesis of Mg‒Al alloy nanoparticles by plasma arc evaporation technique.Chemical Engineering Journal, 2015, 259: 918–926
https://doi.org/10.1016/j.cej.2014.08.053
116 J G, Lee P, Li C J, Choi et al.. Synthesis of Mn‒Al alloy nanoparticles by plasma arc discharge.Thin Solid Films, 2010, 519(1): 81–85
https://doi.org/10.1016/j.tsf.2010.07.063
117 A, Safari K, Gheisari M Farbod . Structural, microstructural, magnetic and dielectric properties of Ni‒Zn ferrite powders synthesized by plasma arc discharge process followed by post-annealing.Journal of Magnetism and Magnetic Materials, 2019, 488: 165369
https://doi.org/10.1016/j.jmmm.2019.165369
118 D S, Kim J H, Kim H, Suematsu et al.. Role of voltage and gas in determining the mean diameter in Sn-58 Bi intermetallic compound nanoparticles for pulsed wire discharge.Metals and Materials International, 2016, 22(2): 319–323
https://doi.org/10.1007/s12540-016-5558-z
119 J I, Hong V C, Solomon D J, Smith et al.. One-step production of optimized Fe‒Ga particles by spark erosion.Applied Physics Letters, 2006, 89(14): 142506
https://doi.org/10.1063/1.2358825
120 J P, Lei X L, Dong X G, Zhu et al.. Formation and characterization of intermetallic Fe‒Sn nanoparticles synthesized by an arc discharge method.Intermetallics, 2007, 15(12): 1589–1594
https://doi.org/10.1016/j.intermet.2007.06.010
121 S, Kala R, Theissmann F E Kruis . Generation of AuGe nanocomposites by co-sparking technique and their photoluminescence properties.Journal of Nanoparticle Research, 2013, 15(9): 1963
https://doi.org/10.1007/s11051-013-1963-0
122 N S, Tabrizi Q, Xu der Pers N M, van et al.. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge.Journal of Nanoparticle Research, 2010, 12(1): 247–259
https://doi.org/10.1007/s11051-009-9603-4
123 A, Muntean M, Wagner J, Meyer et al.. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge.Journal of Nanoparticle Research, 2016, 18(8): 229
https://doi.org/10.1007/s11051-016-3547-2
124 Z, Han D, Li M, Tong et al.. Permittivity and permeability of Fe(Tb) nanoparticles and their microwave absorption in the 2‒18 GHz range.Journal of Applied Physics, 2010, 107(9): 09A929
https://doi.org/10.1063/1.3369972
125 K H, Tseng C J, Chou T C, Liu et al.. Preparation of Ag‒Cu composite nanoparticles by the submerged arc discharge method in aqueous media.Materials Transactions, 2016, 57(3): 294–301
https://doi.org/10.2320/matertrans.M2015288
126 N, Panuthai R, Savanglaa P, Praserthdam et al.. Characterization of copper‒zinc nanoparticles synthesized via submerged arc discharge with successive reduction process.Japanese Journal of Applied Physics, 2014, 53(5S3): 05HA11
https://doi.org/10.7567/JJAP.53.05HA11
127 V C, Solomon J I, Hong Y, Tang et al.. Electron microscopy investigation of spark-eroded Ni‒Mn‒Ga ferromagnetic shape-memory alloy particles.Scripta Materialia, 2007, 56(7): 593–596
https://doi.org/10.1016/j.scriptamat.2006.12.034
128 Y J, Tang D J, Smith H, Hu et al.. Structure and phase transformation of ferromagnetic shape memory alloy Ni49Mn30Ga21 fine particles prepared by spark erosion.IEEE Transactions on Magnetics, 2003, 39(5): 3405–3407
https://doi.org/10.1109/TMAG.2003.816165
129 Y J, Tang V C, Solomon D J, Smith et al.. Magnetocaloric effect in NiMnGa particles produced by spark erosion.Journal of Applied Physics, 2005, 97(10): 10M309
https://doi.org/10.1063/1.1852451
130 V C, Solomon D J, Smith Y, Tang et al.. Microstructural characterization of Ni‒Mn‒Ga ferromagnetic shape memory alloy powders.Journal of Applied Physics, 2004, 95(11): 6954–6956
https://doi.org/10.1063/1.1687204
131 A Q, Mao H Z, Xiang X Q, Ran et al.. Plasma arc discharge synthesis of multicomponent Co‒Cr‒Cu‒Fe‒Ni nanoparticles.Journal of Alloys and Compounds, 2019, 775: 1177–1183
https://doi.org/10.1016/j.jallcom.2018.10.170
132 Y J, Tang F T, Parker H, Harper et al.. Microstructure and exchange coupling in nanocrystalline Nd2(FeCo)14B/α-FeCo particles produced by spark erosion.Applied Physics Letters, 2005, 86(12): 122507
https://doi.org/10.1063/1.1890474
133 Y, Li Y, Liao L, Ji et al.. Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption.Small, 2022, 18(4): 2107265
https://doi.org/10.1002/smll.202107265
134 D V, Smovzh S Z, Sakhapov A V, Zaikovskii et al.. Formation mechanism of MgO hollow nanospheres via calcination of C–MgO composite produced by electric arc spraying.Ceramics International, 2019, 45(6): 7338–7343
https://doi.org/10.1016/j.ceramint.2019.01.017
135 Y J, Su H, Wei Z H, Zhou et al.. Rapid synthesis and characterization of magnesium oxide nanocubes via DC arc discharge.Materials Letters, 2011, 65(1): 100–103
https://doi.org/10.1016/j.matlet.2010.09.015
136 Y, Su J, Zhang L, Zhang et al.. Controlled synthesis of different metal oxide nanostructures by direct current arc discharge.Journal of Nanoscience and Nanotechnology, 2013, 13(2): 1078–1081
https://doi.org/10.1166/jnn.2013.5955
137 J H, Chen G H, Lu L Y, Zhu et al.. A simple and versatile mini-arc plasma source for nanocrystal synthesis.Journal of Nanoparticle Research, 2007, 9(2): 203–213
https://doi.org/10.1007/s11051-006-9168-4
138 W G, Kreyling P, Biswas M E, Messing et al.. Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies.Journal of Nanoparticle Research, 2011, 13(2): 511–524
https://doi.org/10.1007/s11051-010-0081-5
139 A, Efimov V, Sukharev V, Ivanov et al.. The influence of parameters of spark discharge generator on dimensional characteristics of synthesized TiO2 nanoparticles.Oriental Journal of Chemistry, 2015, 31(4): 2285–2290
https://doi.org/10.13005/ojc/310456
140 A, Efimov A, Lizunova V, Sukharev et al.. Synthesis and characterization of TiO2, Cu2O and Al2O3 aerosol nanoparticles produced by the multi-spark discharge generator.Korean Journal of Materials Research, 2016, 26(3): 123–129
https://doi.org/10.3740/MRSK.2016.26.3.123
141 J T, Kim J S Chang . Generation of metal oxide aerosol particles by a pulsed spark discharge technique.Journal of Electrostatics, 2005, 63(6–10): 911–916
https://doi.org/10.1016/j.elstat.2005.03.066
142 M, Hong Y J, Su C, Zhou et al.. Scalable synthesis of γ-FeO/CNT composite as high-performance anode material for lithium-ion batteries.Journal of Alloys and Compounds, 2019, 770: 116–124
https://doi.org/10.1016/j.jallcom.2018.08.118
143 T, Prakash G V M, Williams J, Kennedy et al.. High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge.Journal of Applied Physics, 2016, 120(12): 123905
https://doi.org/10.1063/1.4963293
144 C, Corbella S, Portal M A S R, Saadi et al.. Few-layer flakes of molybdenum disulphide produced by anodic arc discharge in pulsed mode.Plasma Research Express, 2019, 1(4): 045009
https://doi.org/10.1088/2516-1067/ab612b
145 M, Javid Y L, Zhou T H, Zhou et al.. In-situ fabrication of Fe@ZrO nanochains for the heat-resistant electromagnetic wave absorber.Materials Letters, 2019, 242: 199–202
https://doi.org/10.1016/j.matlet.2019.01.053
146 H, Kabbara J, Ghanbaja C, Noël et al.. Synthesis of Cu@ZnO core–shell nanoparticles by spark discharges in liquid nitrogen.Nano-Structures & Nano-Objects, 2017, 10: 22–29
https://doi.org/10.1016/j.nanoso.2017.03.002
147 T, Merciris F, Valensi A Hamdan . Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges.Journal of Applied Physics, 2021, 129(6): 063303
https://doi.org/10.1063/5.0040171
148 X L, Fan K F Yao . Structural and magnetic properties of FeO nanoparticles prepared by arc-discharge in water.Chinese Science Bulletin, 2007, 52(20): 2866–2870
https://doi.org/10.1007/s11434-007-0410-y
149 D, Delaportas P, Svarnas I, Alexandrou et al.. γ-Al2O3 nanoparticle production by arc-discharge in water: discharge characterization and nanoparticle investigation.Journal of Physics D: Applied Physics, 2009, 42(24): 245204
https://doi.org/10.1088/0022-3727/42/24/245204
150 P J, Boruah R R, Khanikar H Bailung . Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3‒x) nanoparticles by plasma discharge in liquid and its photocatalytic activity.Plasma Chemistry and Plasma Processing, 2020, 40(4): 1019–1036
https://doi.org/10.1007/s11090-020-10073-3
151 A A, Ashkarran Zad A, Iraji M M, Ahadian et al.. Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water.Nanotechnology, 2008, 19(19): 195709
https://doi.org/10.1088/0957-4484/19/19/195709
152 A A, Ashkarran S A A, Afshar S M, Aghigh et al.. Photocatalytic activity of ZrO2 nanoparticles prepared by electrical arc discharge method in water.Polyhedron, 2010, 29(4): 1370–1374
https://doi.org/10.1016/j.poly.2010.01.003
153 A A, Ashkarran M, Kavianipour S M, Aghigh et al.. On the formation of TiO2 nanoparticles via submerged arc discharge technique: synthesis, characterization and photocatalytic properties.Journal of Cluster Science, 2010, 21(4): 753–766
https://doi.org/10.1007/s10876-010-0333-7
154 V S, Burakov A A, Nevar M I, Nedel’Ko et al.. Formation of zinc oxide nanoparticles during electric discharge in water.Technical Physics Letters, 2008, 34(8): 679–681
https://doi.org/10.1134/S1063785008080166
155 A A, Ashkarran A I, Zad S M, Mahdavi et al.. ZnO nanoparticles prepared by electrical arc discharge method in water.Materials Chemistry and Physics, 2009, 118(1): 6–8
https://doi.org/10.1016/j.matchemphys.2009.07.002
156 K H, Tseng Y S, Lin H C, Ku et al.. Study on the characteristics of zinc oxide nanocolloid prepared using electrical spark discharge method.Journal of Cluster Science, 2022, 33(1): 145–150
https://doi.org/10.1007/s10876-020-01949-7
157 K H, Tseng C Y, Chang M Y, Chung et al.. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure.Nanotechnology, 2017, 28(46): 465701
https://doi.org/10.1088/1361-6528/aa8da9
158 H, Chang M K Liu . Fabrication and process analysis of anatase type TiO2 nanofluid by an arc spray nanofluid synthesis system.Journal of Crystal Growth, 2007, 304(1): 244–252
https://doi.org/10.1016/j.jcrysgro.2007.02.009
159 P K, Karahaliou P, Svarnas S N, Georga et al.. CuO/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response.Journal of Nanoparticle Research, 2012, 14(12): 1297
https://doi.org/10.1007/s11051-012-1297-3
160 D, Delaportas P, Svarnas I, Alexandrou et al.. CuO/Ta2O5 core/shell nanoparticles produced by arc-discharge in water.Materials Letters, 2011, 65(15–16): 2337–2340
https://doi.org/10.1016/j.matlet.2011.05.044
161 E, Hashemi R, Poursalehi H Delavari . Formation mechanisms, structural and optical properties of Bi/Bi2O3 one dimensional nanostructures prepared via oriented aggregation of bismuth based nanoparticles synthesized by DC arc discharge in water.Materials Science in Semiconductor Processing, 2019, 89: 51–58
https://doi.org/10.1016/j.mssp.2018.08.028
162 I, Alexandrou N, Sano A, Burrows et al.. Structural investigation of MoS2 core‒shell nanoparticles formed by an arc discharge in water.Nanotechnology, 2003, 14(8): 913–917
https://doi.org/10.1088/0957-4484/14/8/313
163 K H, Tseng W J, Lin M Y, Chung et al.. Preparing cuprous iodide nanocolloid by the electrical spark discharge method.Journal of Cluster Science, 2022, 33(5): 2069–2075
https://doi.org/10.1007/s10876-021-02127-z
164 Z, Kelgenbaeva E, Omurzak S, Takebe et al.. Magnetite nanoparticles synthesized using pulsed plasma in liquid.Japanese Journal of Applied Physics, 2013, 52(11S): 11NJ02
https://doi.org/10.7567/JJAP.52.11NJ02
165 H, Chang T T, Tsung L C, Chen et al.. TiO2 nanoparticle suspension preparation using ultrasonic vibration-assisted arc-submerged nanoparticle synthesis system.Materials Transactions, 2004, 45(3): 806–811
https://doi.org/10.2320/matertrans.45.806
166 C C, Chiu J C, Lo M H Teng . A novel high efficiency method for the synthesis of graphite encapsulated metal nanoparticles.Diamond and Related Materials, 2012, 24: 179–183
https://doi.org/10.1016/j.diamond.2012.01.015
167 R S, Ruoff D C, Lorents B, Chan et al.. Single crystal metals encapsulated in carbon nanoparticles.Science, 1993, 259(5093): 346–348
https://doi.org/10.1126/science.259.5093.346
168 M, Jiang X G, Zhang Y, Liu et al.. Ferromagnetic carbon-coated iron and its compounds nanocrystallite synthesized at high metal to carbon rate and high yield by a modified AC arc method.Materials Science and Engineering B, 2001, 87(1): 66–69
https://doi.org/10.1016/S0921-5107(01)00700-0
169 Y, Liu J, Ling W, Li et al.. Effective synthesis of carbon-coated Co and Ni nanocrystallites with improved magnetic properties by AC arc discharge under an N2 atmosphere.Nanotechnology, 2004, 15(1): 43–47
https://doi.org/10.1088/0957-4484/15/1/008
170 Y, Saito K, Nishikubo K, Kawabata et al.. Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge.Journal of Applied Physics, 1996, 80(5): 3062–3067
https://doi.org/10.1063/1.363166
171 J J, Ding X B, Yan B K, Tay et al.. One-step synthesis of pure Cu nanowire/carbon nanotube coaxial nanocables with different structures by arc discharge.Journal of Physics and Chemistry of Solids, 2011, 72(12): 1519–1523
https://doi.org/10.1016/j.jpcs.2011.09.004
172 R, Hu M A, Ciolan X K, Wang et al.. Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism (vol 27, 335602, 2016).Nanotechnology, 2020, 31(13): 139501
https://doi.org/10.1088/1361-6528/ab6238
173 R, Hu T, Furukawa X, Wang et al.. Morphological study of graphite-encapsulated iron composite nanoparticles fabricated by a one-step arc discharge method.Applied Surface Science, 2017, 416: 731–741
https://doi.org/10.1016/j.apsusc.2017.04.231
174 R, Hu T, Furukawa X K, Wang et al.. Tailoring amino-functionalized graphitic carbon-encapsulated gold core/shell nanostructures for the sensitive and selective detection of copper ions.Advanced Functional Materials, 2017, 27(36): 1702232
https://doi.org/10.1002/adfm.201702232
175 R, Hu T, Furukawa Y, Gong et al.. Tailoring of Cu@graphitic carbon nanostructures enables the selective detection of copper ions and highly efficient catalysis of organic pollutants.Advanced Materials Interfaces, 2018, 5(16): 1800551
https://doi.org/10.1002/admi.201800551
176 R, Hu T, Furukawa X K, Wang et al.. Highly concentrated amino group-functionalized graphite encapsulated magnetic nanoparticles fabricated by a one-step arc discharge method.Carbon, 2016, 110: 215–224
https://doi.org/10.1016/j.carbon.2016.09.008
177 T, Wang J, Xiao X, Yang et al.. New insights into nanostructure/functionality-dependent catalysis of pollutants by arc-designing graphite-encapsulated silver nanoparticles.Chemical Engineering Journal, 2022, 430: 132774
https://doi.org/10.1016/j.cej.2021.132774
178 X L, Dong Z D, Zhang S R, Jin et al.. Carbon-coated Fe‒Co(C) nanocapsules prepared by arc discharge in methane.Journal of Applied Physics, 1999, 86(12): 6701–6706
https://doi.org/10.1063/1.371747
179 X H, Qu Y L, Zhou X Y, Li et al.. Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber.Inorganic Chemistry Frontiers, 2020, 7(5): 1148–1160
https://doi.org/10.1039/C9QI01577A
180 Z Y, Zhang J S, Liang X, Zhang et al.. Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries.International Journal of Hydrogen Energy, 2020, 45(15): 8186–8197
https://doi.org/10.1016/j.ijhydene.2020.01.151
181 J H, Byeon J W Kim . Ambient plasma synthesis of TiO2@graphite oxide nanocomposites for efficient photocatalytic hydrogenation.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(19): 6939–6944
https://doi.org/10.1039/c4ta00287c
182 M H, Teng H Y, Lin C C, Chiu et al.. Using liquid organic compounds to improve the encapsulation efficiency in the synthesis of graphite encapsulated metal nanoparticles by an arc-discharge method.Diamond and Related Materials, 2017, 80: 133–139
https://doi.org/10.1016/j.diamond.2017.10.011
183 R, Sergiienko E, Shibata Z, Akase et al.. Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol.Journal of Materials Research, 2006, 21(10): 2524–2533
https://doi.org/10.1557/jmr.2006.0316
184 A, Hamdan J L Liu . Scenario of carbon-encapsulated particle synthesis by spark discharges in liquid hydrocarbons.Plasma Processes and Polymers, 2021, 18(7): e2100013
https://doi.org/10.1002/ppap.202100013
185 D, Han S W, Or X, Dong et al.. FeSn2/defective onion-like carbon core‒shell structured nanocapsules for high-frequency microwave absorption.Journal of Alloys and Compounds, 2017, 695: 2605–2611
https://doi.org/10.1016/j.jallcom.2016.11.167
186 Y, Saito T Yoshikawa . Bamboo-shaped carbon tube filled partially with nickel.Journal of Crystal Growth, 1993, 134(1–2): 154–156
https://doi.org/10.1016/0022-0248(93)90020-W
187 D V, Smovzh S Z, Sakhapov A V, Zaikovskii et al.. Arc discharge sputtering model of Mg‒Al‒C anode for the nanoceramics production.Vacuum, 2022, 196: 110802
https://doi.org/10.1016/j.vacuum.2021.110802
188 A, Pak A, Ivashutenko A, Zakharova et al.. Cubic SiC nanowire synthesis by DC arc discharge under ambient air conditions.Surface and Coatings Technology, 2020, 387: 125554
https://doi.org/10.1016/j.surfcoat.2020.125554
189 A Y, Pak K B, Larionov A P, Korchagina et al.. Silicon carbide obtaining with DC arc-discharge plasma: synthesis, product characterization and purification.Materials Chemistry and Physics, 2021, 271: 124938
https://doi.org/10.1016/j.matchemphys.2021.124938
190 A V, Zaikovskii T Y, Kardash B A, Kolesov et al.. Graphene, SiC and Si nanostructures synthesis during quartz pyrolysis in arc-discharge plasma.Physica Status Solidi A: Applications and Materials Science, 2019, 216(14): 1900079
https://doi.org/10.1002/pssa.201900079
191 S C, Chiu C W, Huang Y Y Li . Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method.The Journal of Physical Chemistry C, 2007, 111(28): 10294–10297
https://doi.org/10.1021/jp0687192
192 Y S, Park S, Kodama H Sekiguchi . Preparation of metal nitride particles using arc discharge in liquid nitrogen.Nanomaterials, 2021, 11(9): 2214
https://doi.org/10.3390/nano11092214
193 Q S, Wang W Z, Wu J, Zhang et al.. Formation, photoluminescence and ferromagnetic characterization of Ce doped AlN hierarchical nanostructures.Journal of Alloys and Compounds, 2019, 775: 498–502
https://doi.org/10.1016/j.jallcom.2018.10.110
194 N R, Haghighi R Poursalehi . Effect of C/H and C/O ratios on the arc discharge synthesis of titanium carbide nanoparticles in organic liquids.Applied Nanoscience, 2019, 9(3): 411–421
https://doi.org/10.1007/s13204-018-00946-7
195 Z D, Zhang J L, Yu J G, Zheng et al.. Structure and magnetic properties of boron-oxide-coated Fe(B) nanocapsules prepared by arc discharge in diborane.Physical Review B: Condensed Matter, 2001, 64(2): 024404
https://doi.org/10.1103/PhysRevB.64.024404
196 M I, Dvornik E A, Mikhailenko S V Nikolenko . Development of a method for producing submicron cemented carbide from a powder obtained by electrical discharge erosion of scrap in oil.Powder Technology, 2021, 383: 175–182
https://doi.org/10.1016/j.powtec.2021.01.048
197 M R, Shabgard F Kabirinia . Effect of dielectric liquid on characteristics of WC‒Co powder synthesized using EDM process.Materials and Manufacturing Processes, 2014, 29(10): 1269–1276
https://doi.org/10.1080/10426914.2013.852207
198 M R, Shabgard A F Najafabadi . The influence of dielectric media on nano-structured tungsten carbide (WC) powder synthesized by electro-discharge process.Advanced Powder Technology, 2014, 25(3): 937–945
https://doi.org/10.1016/j.apt.2014.01.015
199 X G, Liu D Y, Geng H, Meng et al.. Microwave-absorption properties of ZnO-coated iron nanocapsules.Applied Physics Letters, 2008, 92(17): 173117
https://doi.org/10.1063/1.2919098
200 X F, Zhang X L, Dong H, Huang et al.. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules.Journal of Physics D: Applied Physics, 2007, 40(17): 5383–5387
https://doi.org/10.1088/0022-3727/40/17/056
201 X F, Zhang X L, Dong H, Huang et al.. Microwave absorption properties of the carbon-coated nickel nanocapsules.Applied Physics Letters, 2006, 89(5): 053115
https://doi.org/10.1063/1.2236965
202 X G, Liu S W, Or C M, Leung et al.. Core/shell/shell-structured nickel/carbon/polyaniline nanocapsules with large absorbing bandwidth and absorber thickness range.Journal of Applied Physics, 2014, 115(17): 17A507
https://doi.org/10.1063/1.4861581
203 J J, Jiang X J, Li Z, Han et al.. Disorder-modulated microwave absorption properties of carbon-coated FeCo nanocapsules.Journal of Applied Physics, 2014, 115(17): 17A514
https://doi.org/10.1063/1.4865461
204 X G, Liu D Y, Geng S, Ma et al.. Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules.Journal of Applied Physics, 2008, 104(6): 064319
https://doi.org/10.1063/1.2982411
205 Y, Zhou N, Wang J, Muhammad et al.. Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption.Carbon, 2019, 148: 204–213
https://doi.org/10.1016/j.carbon.2019.03.034
206 Y, Zhou N, Wang X, Qu et al.. Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications.Nanoscale, 2019, 11(42): 19994–20005
https://doi.org/10.1039/C9NR07111C
207 J M, Tarascon M Armand . Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414(6861): 359–367
https://doi.org/10.1038/35104644
208 T T, Zuo X W, Wu C P, Yang et al.. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes.Advanced Materials, 2017, 29(29): 1700389
https://doi.org/10.1002/adma.201700389
209 T, Hang H, Nara T, Yokoshima et al.. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries.Journal of Power Sources, 2013, 222: 503–509
https://doi.org/10.1016/j.jpowsour.2012.09.008
210 S, Petnikota S K, Marka A, Banerjee et al.. Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron(II) oxide’ composite for anode application in lithium ion batteries.Journal of Power Sources, 2015, 293: 253–263
https://doi.org/10.1016/j.jpowsour.2015.05.075
211 X G, Liu X L, Li Y P, Sun et al.. Onion-like carbon coated FeC nanocapsules embedded in porous carbon for the stable lithium-ion battery anode.Applied Surface Science, 2019, 479: 318–325
https://doi.org/10.1016/j.apsusc.2019.02.098
212 Y M, Sun N A, Liu Y Cui . Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nature Energy, 2016, 1(7): 16071
https://doi.org/10.1038/nenergy.2016.71
213 C J, Liu H, Huang G Z, Cao et al.. Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode.Electrochimica Acta, 2014, 144: 376–382
https://doi.org/10.1016/j.electacta.2014.07.068
214 X, Wang C L, Dong M H, Lou et al.. Tunable synthesis of Fe‒Ge alloy confined in oxide matrix and its application for energy storage.Journal of Power Sources, 2017, 360: 124–128
https://doi.org/10.1016/j.jpowsour.2017.05.104
215 M, Li H, Du L, Kuai et al.. Scalable dry production process of a superior 3D net-like carbon-based iron oxide anode material for lithium-ion batteries.Angewandte Chemie International Edition, 2017, 56(41): 12649–12653
https://doi.org/10.1002/anie.201707647
216 X G, Liu C Y, Cui N D, Wu et al.. Core/shell-structured nickel cobaltite/onion-like carbon nanocapsules as improved anode material for lithium-ion batteries.Ceramics International, 2015, 41(6): 7511–7518
https://doi.org/10.1016/j.ceramint.2015.02.073
217 D, Han H, Hu B, Liu et al.. CuCo2O4 nanoparticles encapsulated by onion-like carbon layers: a promising solution for high-performance lithium ion battery.Ceramics International, 2016, 42(10): 12460–12466
https://doi.org/10.1016/j.ceramint.2016.05.025
218 J Y, Yu X L, Li Y P, Sun et al.. CoS@sulfur doped onion-like carbon nanocapsules with excellent cycling stability and rate capability for sodium-ion batteries.Ceramics International, 2018, 44(14): 17113–17117
https://doi.org/10.1016/j.ceramint.2018.06.163
219 D, Bera S C, Kuiry M, McCutchen et al.. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method.Journal of Applied Physics, 2004, 96(9): 5152–5157
https://doi.org/10.1063/1.1786347
220 F M, Su X C, Qiu F, Liang et al.. Preparation of nickel nanoparticles by direct current arc discharge method and their catalytic application in hybrid Na‒air battery.Nanomaterials, 2018, 8(9): 684
https://doi.org/10.3390/nano8090684
221 X S, Lang Y Y, Zhang K D, Cai et al.. High performance CoO nanospheres catalyst synthesized by DC arc discharge plasma method as air electrode for lithium-oxygen battery.Ionics, 2019, 25(1): 35–40
https://doi.org/10.1007/s11581-018-2588-1
222 X S, Lang F, Ge K D, Cai et al.. A novel Mn3O4/MnO nano spherical transition metal compound prepared by vacuum direct current arc method as bi-functional catalyst for lithium-oxygen battery with excellent electrochemical performances.Journal of Alloys and Compounds, 2019, 770: 451–457
https://doi.org/10.1016/j.jallcom.2018.08.142
223 S M, Kim A R, Cho S Y Lee . Characterization and electrocatalytic activity of Pt‒M (M = Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water.Journal of Nanoparticle Research, 2015, 17(7): 284
https://doi.org/10.1007/s11051-015-3096-0
224 Z, Khani D, Schieppati C L, Bianchi et al.. The sonophotocatalytic degradation of pharmaceuticals in water by MnOx‒TiO2 systems with tuned band-gaps.Catalysts, 2019, 9(11): 949
https://doi.org/10.3390/catal9110949
225 J H, Mo Y P, Zhang Q J, Xu et al.. Photocatalytic purification of volatile organic compounds in indoor air: a literature review.Atmospheric Environment, 2009, 43(14): 2229–2246
https://doi.org/10.1016/j.atmosenv.2009.01.034
226 N K, Perkgoz R S, Toru E, Unal et al.. Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range.Applied Catalysis B: Environmental, 2011, 105(1–2): 77–85
https://doi.org/10.1016/j.apcatb.2011.03.037
227 A A, Ashkarran A I, Zad S M, Mahdavi et al.. Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method.Applied Physics A: Materials Science & Processing, 2010, 100(4): 1097–1102
https://doi.org/10.1007/s00339-010-5707-z
228 A, Avci V, Eskizeybek H, Gülce et al.. ZnO‒TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties.Applied Physics A: Materials Science & Processing, 2014, 116(3): 1119–1125
https://doi.org/10.1007/s00339-013-8194-1
229 N A, Sirotkin A V, Khlyustova V A, Titov et al.. Synthesis and photocatalytic activity of WO3 nanoparticles prepared by underwater impulse discharge.Plasma Chemistry and Plasma Processing, 2020, 40(2): 571–587
https://doi.org/10.1007/s11090-019-10048-z
230 X Y, Chen Y, Zhou Q, Liu et al.. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light.ACS Applied Materials & Interfaces, 2012, 4(7): 3372–3377
https://doi.org/10.1021/am300661s
231 J J, Cai H, Chen S L, Ding et al.. Promoting photocarrier separation for photoelectrochemical water splitting in α-Fe2O3@C.Journal of Nanoparticle Research, 2019, 21(7): 153
https://doi.org/10.1007/s11051-019-4592-4
232 H, Yang Y, Liu Q H, Shen et al.. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated nano-assembly and its antibacterial properties.Journal of Materials Chemistry, 2012, 22(45): 24132–24138
https://doi.org/10.1039/c2jm35621j
233 N, Babitha L S, Priya S R, Christy et al.. Enhanced antibacterial activity and photo-catalytic properties of ZnO nanoparticles: Pedalium murex plant extract-assisted synthesis.Journal of Nanoscience and Nanotechnology, 2019, 19(5): 2888–2894
https://doi.org/10.1166/jnn.2019.16023
234 A A Ashkarran . A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid.Current Applied Physics, 2010, 10(6): 1442–1447
https://doi.org/10.1016/j.cap.2010.05.010
235 A A, Ashkarran A I, Zad M M, Ahadian et al.. Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water.The European Physical Journal Applied Physics, 2009, 48(1): 10601
https://doi.org/10.1051/epjap/2009113
236 M G, Mobaraki M, Shabgard H S Kafil . Quasi-amorphous colloidal ZnO nanoparticles: facile single-step synthesize, comprehensive characterization and superior antibacterial efficacy.Materials Research Express, 2019, 6(12): 125010
https://doi.org/10.1088/2053-1591/ab5414
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed