High-stability double-layer polymer‒inorganic composite electrolyte fabricated through ultraviolet curing process for solid-state lithium metal batteries
1. Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science & Technology, Liuzhou 545006, China 2. Guangxi Automobile Group Co., Ltd., Liuzhou 545006, China 3. School of Automotive Engineering, Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, China
Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries (SSLMBs). This work details the fabrication of a double-layer solid composite electrolyte (DLSCE) for SSLMBs. The composite comprises poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF‒HFP) and poly(methyl methacrylate) (PMMA) combined with 10 wt.% of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), synthesized through an ultraviolet curing process. The ionic conductivity of the DLSCE (2.6 × 10−4 S·cm−1) at room temperature is the high lithium-ion transference number (0.57), and the tensile strength is 17.8 MPa. When this DLSCE was assembled, the resulted LFP/DLSCE/Li battery exhibited excellent rate performance, with the discharge specific capacities of 162.4, 146.9, 93.6, and 64.0 mA·h·g−1 at 0.1, 0.2, 0.5, and 1 C, respectively. Furthermore, the DLSCE demonstrates remarkable stability with lithium metal batteries, facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA·cm−2. Notably, the formation of lithium dendrites is also effectively inhibited during cycling. This work provides a novel design strategy and preparation method for solid composite electrolytes.
I M, Hung D Mohanty . Preparation and characterization of LLZO–LATP composite solid electrolyte for solid-state lithium-ion battery.Solid State Communications, 2023, 364: 115135 https://doi.org/10.1016/j.ssc.2023.115135
2
Z, Chen G T, Kim J K, Kim et al.. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer.Advanced Energy Materials, 2021, 11(30): 2101339 https://doi.org/10.1002/aenm.202101339
3
X, Liang Y, Ning L, Lan et al.. Electrochemical performance of a PVDF–HFP–LiClO4–Li6.4La3Zr1.4Ta0.6O12 composite solid electrolyte at different temperatures.Nanomaterials, 2022, 12(19): 3390 https://doi.org/10.3390/nano12193390
4
W J, Zhang S L, Li Y R, Zhang et al.. A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries.Science China: Technological Sciences, 2022, 65(10): 2369–2379 https://doi.org/10.1007/s11431-022-2075-8
5
Y H, Cho J, Wolfenstine E, Rangasamy et al.. Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3.Journal of Materials Science, 2012, 47(16): 5970–5977 https://doi.org/10.1007/s10853-012-6500-5
6
S, Liu Y, Zhao X, Li et al.. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces.Advanced Materials, 2021, 33(12): 2008084 https://doi.org/10.1002/adma.202008084
7
X, Ping Q, Zheng B, Meng et al.. Influence of sintering atmosphere on the phase, microstructure, and lithium-ion conductivity of the Al-doped Li7La3Zr2O12 solid electrolyte.Ceramics International, 2022, 48(18): 25689–25695 https://doi.org/10.1016/j.ceramint.2022.05.176
8
J, Su X, Huang Z, Song et al.. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal.Ceramics International, 2019, 45(12): 14991–14996 https://doi.org/10.1016/j.ceramint.2019.04.236
9
Y, Ren Y, Shen Y, Lin et al.. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte.Electrochemistry Communications, 2015, 57: 27–30 https://doi.org/10.1016/j.elecom.2015.05.001
10
F, Han A S, Westover J, Yue et al.. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes.Nature Energy, 2019, 4(3): 187–196 https://doi.org/10.1038/s41560-018-0312-z
11
Y, Liang Z, Lin Y, Qiu et al.. Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators.Electrochimica Acta, 2011, 56(18): 6474–6480 https://doi.org/10.1016/j.electacta.2011.05.007
12
X, Lu J, Hai F, Zhang et al.. Preparation and infiltration of NASICON-type solid electrolytes with microporous channels.Ceramics International, 2022, 48(2): 2203–2211 https://doi.org/10.1016/j.ceramint.2021.09.312
13
M G, Nam J, Moon M, Kim et al.. p‐Phenylenediamine-bridged binder-electrolyte-unified supramolecules for versatile lithium secondary batteries.Advanced Materials, 2024, 36(5): 2304803 https://doi.org/10.1002/adma.202304803
14
L, Xu X, Xiao H, Tu et al.. Engineering functionalized 2D metal–organic frameworks nanosheets with fast Li+ conduction for advanced solid li batteries.Advanced Materials, 2023, 35(38): 2303193 https://doi.org/10.1002/adma.202303193
15
J H Hu . Mechanical and optical properties of PMMA prepared by modified microemulsion polymerization.Acta Chimica Sinica, 2009, 6712: 1370
16
M, Ooe K, Miyata J, Yoshioka et al.. Direct observation of mobility of thin polymer layers via asymmetric interdiffusion using neutron reflectivity measurements.The Journal of Chemical Physics, 2019, 151(24): 244905 https://doi.org/10.1063/1.5132768
17
Z, Han Y, Dong C Liu . Coordination of modified PAN fibers with Fe3+ and catalytic activity of their complexes for dye degradation.Chemical Journal of Chinese Universities, 2010, 315: 986–993
18
Q Y, Wu X N, Chen L S, Wan et al.. Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis.The Journal of Physical Chemistry B, 2012, 116(28): 8321–8330 https://doi.org/10.1021/jp304167f
19
S, Cui L, Li Q Wang . Fabrication of (PPC/NCC)/PVA composites with inner-outer double constrained structure and improved glass transition temperature.Carbohydrate Polymers, 2018, 191: 35–43 https://doi.org/10.1016/j.carbpol.2018.02.070
20
C K, Ullrich L, Lehmann W B, London et al.. End-of-life care patterns associated with pediatric palliative care among children who underwent hematopoietic stem cell transplant.Biology of Blood and Marrow Transplantation, 2016, 22(6): 1049–1055 https://doi.org/10.1016/j.bbmt.2016.02.012
21
M, Dirican C, Yan P, Zhu et al.. Composite solid electrolytes for all-solid-state lithium batteries.Materials Science and Engineering R: Reports, 2019, 136: 27–46 https://doi.org/10.1016/j.mser.2018.10.004
22
Y, Huang Z, Zhang H, Gao et al.. Li1.5Al0.5Ti1.5(PO4)3 enhanced polyethylene oxide polymer electrolyte for all-solid-state lithium batteries.Solid State Ionics, 2020, 356: 115437 https://doi.org/10.1016/j.ssi.2020.115437
23
P, Barai K, Higa V Srinivasan . Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies.Physical Chemistry Chemical Physics, 2017, 19(31): 20493–20505 https://doi.org/10.1039/C7CP03304D
24
Z, Yao K, Zhu X, Li et al.. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium–metal batteries.ACS Applied Materials & Interfaces, 2021, 13(10): 11958–11967 https://doi.org/10.1021/acsami.0c22532
25
X, Wang X, Hao Y, Xia et al.. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium–sulfur batteries.Journal of Membrane Science, 2019, 582: 37–47 https://doi.org/10.1016/j.memsci.2019.03.048
26
T, He G, Zeng C, Feng et al.. A solid-electrolyte-reinforced separator through single-step electrophoretic assembly for safe high-capacity lithium ion batteries.Journal of Power Sources, 2020, 448: 227469 https://doi.org/10.1016/j.jpowsour.2019.227469
27
H X, Xie Q G, Fu Z, Li et al.. Ultraviolet-cured semi-interpenetrating network polymer electrolytes for high-performance quasi-solid-state lithium metal batteries.Chemistry, 2021, 27(28): 7773–7780 https://doi.org/10.1002/chem.202100380
28
L, Liu X, Wang C, Yang et al.. PVDF–HFP-based gel polymer electrolyte with semi-interpenetrating networks for dendrite-free lithium metal battery.Acta Metallurgica Sinica: English Letters, 2021, 34(3): 417–424 https://doi.org/10.1007/s40195-020-01142-9
29
D, Wang D, Cai Y, Zhong et al.. A three-dimensional electrospun Li6.4La3Zr1.4Ta0.6O12–poly (vinylidene fluoride-hexafluoropropylene) gel polymer electrolyte for rechargeable solid-state lithium ion batteries.Frontiers in Chemistry, 2021, 9: 751476 https://doi.org/10.3389/fchem.2021.751476
30
Y, Gu H Liu . PVDF–HFP/LLZTO composite electrolytes with UV cure for solid-state lithium rechargeable batteries.Journal of Solid State Electrochemistry, 2023, 27(10): 2671–2679 https://doi.org/10.1007/s10008-023-05570-2
31
S, Li S Q, Zhang L, Shen et al.. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries.Advanced Science, 2020, 7(5): 1903088 https://doi.org/10.1002/advs.201903088
32
S, Li J, Lu Z, Geng et al.. Solid polymer electrolyte reinforced with a Li1.3Al0.3Ti1.7(PO4)3-coated separator for all-solid-state lithium batteries.ACS Applied Materials & Interfaces, 2022, 14(1): 1195–1202 https://doi.org/10.1021/acsami.1c21804
33
X, Zheng K, Liu T, Yang et al.. Sandwich composite PEO@(Er0.5Nb0.5)0.05Ti0.95O2@cellulose electrolyte with high cycling stability for all-solid-state lithium metal batteries.Journal of Alloys and Compounds, 2021, 877: 160307 https://doi.org/10.1016/j.jallcom.2021.160307
34
H, Fan C, Yang X, Wang et al.. UV-curable PVDF–HFP-based gel electrolytes with semi-interpenetrating polymer network for dendrite-free lithium metal batteries.Journal of Electroanalytical Chemistry, 2020, 871: 114308 https://doi.org/10.1016/j.jelechem.2020.114308
35
K, Luo D, Shao L, Yang et al.. Semi-interpenetrating gel polymer electrolyte based on PVDF–HFP for lithium ion batteries.Journal of Applied Polymer Science, 2021, 138(11): e49993 https://doi.org/10.1002/app.49993
36
K, Xu C, Xu Y, Jiang et al.. Sandwich structured PVDF–HFP-based composite solid electrolytes for solid-state lithium metal batteries.Ionics, 2022, 28(7): 3243–3253 https://doi.org/10.1007/s11581-022-04599-z
37
F, Yousefi S B, Mousavi S Z, Heris et al.. UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: a comprehensive evaluation.Scientific Reports, 2023, 13(1): 7116 https://doi.org/10.1038/s41598-023-34120-z
38
J, Zhang S, Chen X, Xie et al.. Porous poly(vinylidene fluoride-co-hexafluoropropylene) polymer membrane with sandwich-like architecture for highly safe lithium ion batteries.Journal of Membrane Science, 2014, 472: 133–140 https://doi.org/10.1016/j.memsci.2014.08.049